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A B S T R A C T

Many studies have identified the role of localized and distributed cognitive functionality by mapping either local
task-related activity or distributed functional connectivity (FC). However, few studies have directly explored the
relationship between a brain region’s localized task activity and its distributed task FC. Here we systematically
evaluated the differential contributions of task-related activity and FC changes to identify a relationship between
localized and distributed processes across the cortical hierarchy. We found that across multiple tasks, the
magnitude of regional task-evoked activity was high in unimodal areas, but low in transmodal areas. In contrast,
we found that task-state FC was significantly reduced in unimodal areas relative to transmodal areas. This
revealed a strong negative relationship between localized task activity and distributed FC across cortical regions
that was associated with the previously reported principal gradient of macroscale organization. Moreover, this
dissociation corresponded to hierarchical cortical differences in the intrinsic timescale estimated from resting-
state fMRI and region myelin content estimated from structural MRI. Together, our results contribute to a
growing literature illustrating the differential contributions of a hierarchical cortical gradient representing
localized and distributed cognitive processes.
1. Introduction

The brain processes information in both a localized and distributed
manner. At the macroscale, localized functionality has typically been
revealed by measuring the local activity of brain regions in response to
experimental conditions (Poldrack, 2011; Wallis, 2018). In contrast,
distributed neural processing across large-scale cortical systems has
typically been studied by measuring the task-state functional connec-
tivity (FC; i.e., covariation of neural signal across different brain regions)
(Amico et al., 2019; Cole et al., 2014, 2013; Gratton et al., 2016; Her-
mundstad et al., 2013; Ito et al., 2020; Krienen et al., 2014). Yet few
studies have identified how these two processes – localized and distrib-
uted – differ across the cortical hierarchy during cognition. Here we
directly assess the differential roles of distributed and localized pro-
cessing by characterizing regional differences in local task activations
and distributed task FC during multiple task states. Further, we tie these
regional differences to two intrinsic properties of hierarchical cortical
organization: intrinsic timescale organization estimated from
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resting-state functional magnetic resonance imaging (fMRI) and regional
myelin content from structural MRI.

Many studies have successfully ascribed cognitive functions onto
specific brain regions, demonstrating localized cognitive processes
(Genon et al., 2018; Norman et al., 2006; Poldrack, 2011). Such studies
focus on capturing task-/stimulus-evoked neural response patterns
related to the cognitive processes recruited by experimental paradigms.
This endeavor has identified sets of brain regions associated with, for
example, visual (Haxby et al., 2006; Hubel and Wiesel, 1962; Kanwisher
et al., 1997), language (Fedorenko et al., 2012; Huth et al., 2016), and
motor processes (Churchland et al., 2006; Yokoi and Diedrichsen, 2018),
indicating a wealth of functional diversity across the cortex.

Research focused on the distributed nature of cognitive processing
typically characterize large-scale functional network organization during
task manipulation (Amico et al., 2019; Chauvin et al., 2019; Cole et al.,
2014, 2013; Gratton et al., 2016; Ito et al., 2019; Krienen et al., 2014;
Shine et al., 2016). Such studies have shown that though large-scale
functional network changes are often task-dependent, transmodal areas
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may be disproportionately involved in distributed processes relative to
unimodal areas (Cole et al., 2013; Gratton et al., 2016; Hwang et al.,
2018). While task-evoked activations have been shown to be negatively
associated with FC changes across brain regions (Ito et al., 2019), it is
unclear whether this local versus distributed dichotomy is related to
intrinsic macroscale cortical organization.

Recent studies from our group illustrated that regional task-evoked
activity can be predicted from a distributed activity flow process (Cole
et al., 2016; Ito et al., 2017). This approach – activity flow mapping –

assumes that task-evoked activity is propagated between brain regions
through distributed functional connections that can be estimated during
resting-state fMRI. While the success of this approach assumes that local
activity is the result of a distributed neural process, there are likely
gradients of functional heterogeneity in the brain (Demirtaş et al., 2019;
Huntenburg et al., 2018; Yeo et al., 2015), suggesting that cortical re-
gions may not behave in a uniformly distributed manner. Previous work
has shown that there are structural and functional bases of hierarchical
cortical heterogeneity, such as in regional myelin content (which has
been used as a proxy to index anatomical hierarchy) and intrinsic time-
scale organization (Burt et al., 2018; Felleman and Van Essen, 1991;
Murray et al., 2014; Wang, 2020). Murray et al. illustrated that
lower-order cortical areas tend to operate at fast timescales, potentially
supporting stimulus-/task-locked activity, while higher-order cortical
areas tend to operate at slower timescales, potentially supporting infor-
mation integration from lower-order areas (Murray et al., 2014). How-
ever, those conclusions were based on non-human primate
electrophysiology data. Considering this, we sought to characterize hi-
erarchical timescale organization in human fMRI data and evaluate
whether it was related to local and distributed processes during cognitive
task processing.

We report empirical evidence demonstrating a dissociation of local
and distributed processes across the cortical hierarchy during task states.
We extended previous results to demonstrate that the dissociation of
task-evoked local activity and distributed FC (Ito et al., 2019) is related to
hierarchical cortical organization. Specifically, we first report cortical
heterogeneity in the intrinsic timescales estimated during resting-state
fMRI (Fallon et al., 2020; Lurie and D’Esposito, 2019; Murray et al.,
2014), finding that regions with faster intrinsic timescales had strong
activations and reduced FC during task states. Second, we show that
regional myelin content (T1w/T2w scans), which has recently been
shown to be associated with local genomic, structural, and biophysical
properties (Burt et al., 2018; Demirtaş et al., 2019), also explains cortical
differences in local task activations and distributed FC during multiple
task states. Finally, we show that higher-order transmodal regions are
better predicted via activity flow mapping relative to unimodal regions
(Cole et al., 2016), indicating that the activity of these regions reflect
more distributed processes rather than local processes. Together, our
results illustrate the differential contributions of localized and distrib-
uted cognitive processing along a hierarchical cortical gradient.

2. Materials and methods

2.1. Data and paradigm

We use a publicly available Human Connectome Project (HCP) data
set (Van Essen et al., 2013). The details below are identical to those re-
ported in (Ito et al., 2019), and are included below.

The Rutgers University institutional review board approved this
study. We obtained data from the Washington University-Minnesota
Consortium of the HCP [31]. We used 352 subjects from the HCP 1200
release for empirical analyses. Details and procedures of subject
recruitment can be found in (Van Essen et al., 2013). The 352 subjects
were selected based on: quality control assessments (i.e., any participants
with any quality control flags were excluded, including 1) focal
anatomical anomaly found in T1w and/or T2w scans, 2) focal segmen-
tation or surface errors, as output from the HCP structural pipeline, 3)
2

data collected during periods of known problems with the head coil, 4)
data in which some of the FIX-ICA components were manually reclassi-
fied; low-motion participants (i.e., exclusion of participants that had any
fMRI run in which more than 50% of TRs had greater than 0.25 mm
framewise displacement); removal according to family relations (unre-
lated participants were selected only, and we excluded those with no
genotype testing).

All participants were recruited from Washington University in St.
Louis and the surrounding area. The 352 subjects were split into two
equal cohorts of 176 subjects (99 females and 84 females). The explor-
atory cohort had a mean age of 29 years of age (range ¼ 22–36 years of
age), and the replication cohort had a mean age of 28 years of age (range
¼ 22–36 years of age). All subjects gave signed, informed consent in
accordance with the protocol approved by the Washington University
institutional review board. Whole-brain multiband echo-planar imaging
acquisitions were collected on a 32-channel head coil on a modified 3T
Siemens Skyra with TR ¼ 720 ms, TE ¼ 33.1 ms, flip angle ¼ 52�,
Bandwidth ¼ 2290 Hz/Px, in-plane FOV ¼ 208 � 180 mm, 72 slices, 2.0
mm isotropic voxels, with a multiband acceleration factor of 8. The HCP
collected data over two days for each subject. On the first day, anatomical
scans were collected (including T1-weighted and T2-weighted images
acquired at 0.7 mm isotropic voxels) followed by two resting-state fMRI
scans (each lasting 14.4 min), and ending with a task fMRI component.
The second day consisted of collecting a diffusion imaging scan, followed
another set of two resting-state fMRI scans (each lasting 14.4 min) and a
task fMRI session.

Each of the seven tasks was collected over two consecutive fMRI runs.
The seven tasks consisted of an emotion cognition task, a gambling
reward task, a language task, a motor task, a relational reasoning task, a
social cognition task, and a working memory task. Briefly, the emotion
cognition task required making valence judgements on negative (fearful
and angry) and neutral faces. The gambling reward task consisted of a
card guessing game, where subjects were asked to guess the number on
the card to win or lose money. The language processing task consisted of
interleaving a language condition, which involved answering questions
related to a story presented aurally, and a math condition, which
involved basic arithmetic questions presented aurally. The motor task
involved asking subjects to either tap their left/right fingers, squeeze
their left/right toes, or move their tongue. The reasoning task involved
asking subjects to determine whether two sets of objects differed from
each other in the same dimension (e.g., shape or texture). The social
cognition task was a theory of mind task, where objects (squares, circles,
triangles) interacted with each other in a video clip, and subjects were
subsequently asked whether the objects interacted in a social manner.
Lastly, the working memory task was a variant of the N-back task.

Further details on the resting-state fMRI portion can be found in
(Smith et al., 2013), and additional details on the task fMRI components
can be found in (Barch et al., 2013).

2.2. Preprocessing

Preprocessing details below follow identical procedures from (Ito
et al., 2019), and are described below.

Minimally preprocessed data were obtained from the publicly avail-
able HCP data. Minimally preprocessed surface data was downsampled
into 360 parcels using the (Glasser et al., 2016) atlas. We additionally
preprocessed on the parcellated data for resting-state fMRI and task-state
fMRI. This included removing the first five frames of each run,
de-meaning and de-trending the time series, and performing nuisance
regression on the minimally preprocessed data (Ciric et al., 2017).
Nuisance regression removed motion parameters and physiological
noise. Specifically, six primary motion parameters were removed, along
with their derivatives, and the quadratics of all regressors (24 motion
regressors in total). We applied aCompCor on the physiological time
series extracted from the white matter and ventricle voxels (5 compo-
nents each) (Behzadi et al., 2007). In addition, we included the
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derivatives of each component, and the quadratics of all physiological
noise regressors (40 physiological noise regressors in total). The combi-
nation of motion and physiological noise regressors totaled 64 nuisance
parameters and is a variant of previously benchmarked nuisance
regression models reported in (Ciric et al., 2017).

We did not apply global signal regression (GSR), given that GSR
artificially induces negative correlations (Murphy et al., 2009). We
included aCompCor as a preprocessing step given that aCompCor does
not include GSR while including some of its benefits (some extracted
components are highly similar to the global signal) (Power et al., 2018).
This approach is conceptually similar to temporal-ICA-based artifact
removal procedure that seeks to remove global artifact without removing
global neural signals, which contains behaviorally relevant information
such as vigilance (Glasser et al., 2018; Wong et al., 2013). Further, we
included the derivatives and quadratics of each component time series
(within aCompCor) to further reduce artifacts. Code to perform this
regression is publicly available online using python code (version 2.7.15)
(https://github.com/ito-takuya/fmriNuisanceRegression).

Data for task FC analyses were additionally preprocessed using a
standard general linear model (GLM). We fitted the task timing (block
design) for each task condition using a finite impulse response (FIR)
model (with a lag extending to 25 TRs after task block offset) to remove
the mean evoked task-related activity (Cole et al., 2019). (Across seven
tasks, there were 24 task conditions.) Removing the mean task-evoked
response (i.e., main effect of task) is critical to isolate the spontaneous
neural activity, and has been performed in the spike count correlation
literature for decades (Aertsen et al., 1989; Cohen and Kohn, 2011).

2.3. Task activation analysis

We performed a standard task GLM analysis on fMRI task data to
evaluate the task-evoked activity. The task timing for each of the 24 task
conditions was convolved with the SPM canonical hemodynamic
response function to obtain task-evoked activity estimates (Friston et al.,
1994). FIR modeling was not used when modeling task-evoked activity.
Coefficients were obtained for each parcel in the Glasser et al. (2016)
cortical atlas for each of the 24 task conditions.

To characterize the degree of local processing within a region, we
characterized the average activation magnitude across multiple tasks.
The calculation was identical to a previous report (He, 2013). Specif-
ically, for each condition, we obtained the absolute magnitude of the
t-statistic relative to 0 across subjects. (This characterized the magnitude
of the task-evoked activity relative to baseline, independent of sign.) This
was then averaged across task conditions, resulting in a 360� 1 vector of
task activation magnitudes across multiple task conditions. This vector
was used to characterize the average degree of local processing across
multiple tasks.

2.4. Functional connectivity analyses

We computed the task state FC across all task conditions (between all
pairs of brain regions) after removing the mean task-evoked response for
each condition separately. This resulted in a single 360 � 360 FC matrix.
To obtain a statistically comparable resting-state FC matrix (with
equivalent temporal intervals), we applied the identical calculation to
resting-state data. This involved first regressing out the same task design
matrix used during task-state regression in resting-state data. This was
possible given that the number of timepoints of the combined resting-
state scans in the HCP data set exceeded the number of timepoints of
the combined task-state scans (4800 resting-state TRs > 3880 task-state
TRs). We then obtained each region’s resting-state FC matrix by applying
the same task block design onto resting-state data (i.e., ensuring corre-
lations were obtained using the same temporal intervals as task data,
though data was from resting state).

To obtain the average FC strength change from rest to task for each
brain region, we subtracted the weighted degree centrality (also often
3

referred to as global brain connectivity) computed from task data from
the weighted degree centrality computed from rest data (Cole et al.,
2010; Rubinov and Sporns, 2010). This resulted in a 360� 1 vector of the
averaged FC strength change from rest to task across multiple tasks.

2.5. Peak activation approach for calculating task activations and FC
changes

We conducted an additional set of analyses that did not involve
removing the mean task-evoked response (via task regression) to ensure
results were not dependent on this step. In principle, the mean task-
evoked response removal step is critical for avoiding false positives
(Cole et al., 2019), yet we identified an alternate way to avoid these false
positives: focusing on event-to-event/block-to-block variance and
covariance. This involved taking the peak absolute value of a time series
during each task block (after baselining the time series to the mean ac-
tivity level across all inter-block rest periods). The extracted data points
reflected the peak task-evoked activation within each block for each re-
gion. The peak activation values were then summarized by averaging
across blocks for task activation level estimation, and task FC was
computed as correlations across these block-to-block peak activations
between regions. This is conceptually similar to estimating the beta co-
efficient for each task block separately (Rissman et al., 2004), but we
instead estimate the peak of the block (rather than the coefficient for the
entire block).

To estimate an equivalent resting-state FC that controlled for the
number of time point samples (i.e., samples across ‘blocks’), we applied
the same procedure to resting-state data. Specifically, we applied the
same task design matrix onto resting-state data to identify temporally
equivalent ‘pseudo-blocks’, and extracted the peak absolute BOLD value
of each pseudo-block period. Resting-state FC was then computed as the
correlation across blocks. Task-state FC change for each region was
calculated as the difference between task and rest FC values.

2.6. Intrinsic timescale

We estimated the intrinsic timescales of brain regions using resting-
state fMRI. We computed the autocorrelation function of each brain re-
gion. The main results are reported by estimating the autocorrelation
function with a lag of 100 timepoints (72s). Results were reproduced
using shorter lags (e.g., 40 and 50 time points). To estimate the intrinsic
timescale, we fitted a nonlinear exponential decay function with an offset
to the empirically estimated autocorrelation function as previously
described in (Murray et al., 2014). The exponential decay function was fit
as a function of the time lag kΔ between time bins k ¼ ji � jj, and obeyed
the equation

RðkΔÞ¼A
�
exp

�
� kΔ

τ

�
þB

�
(1)

where A corresponds to a scaling factor, B reflects the offset for contri-
bution of timescales longer than the observation window, and τ corre-
sponds to the intrinsic timescale (i.e., rate of decay). This procedure was
performed for every parcel separately using a nonlinear least-squares
fitting procedure using the ‘Trust Region Reflective’ algorithm as
implemented in scipy.optimize.curvefit (version 1.2.1; python version
3.7.3). Given the biological implausibility of a negative scaling factor (A)
and negative intrinsic timescale (τ), we constrained our solution using
parameter bounds A2 ½0;∞Þ and B 2 ð�∞;∞Þ and τ2 ½0;∞Þ.

2.7. Cortical myelin map

Cortical myelinmaps were obtained in surface-based CIFTI file format
from the authors of a previously published study (Burt et al., 2018), and
are briefly described below. T1w/T2w maps were obtained from the
(HCP) (Van Essen et al., 2013). T1w and T2w maps were registered to a

https://github.com/ito-takuya/fmriNuisanceRegression
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standard reference space (MNI) using an areal-feature-based technique
(Glasser et al., 2016; Robinson et al., 2014). Cortical T1w/T2w maps
were averaged across 339 subjects (see Burt et al., 2018 for additional
details).

Parcellated maps were obtained by downsampling the surface-based
CIFTI file into 360 cortical regions using the Glasser et al. (2016) atlas.
Previous work has shown that this T1w/T2w contrast reflects cortical
myelin content (Glasser and Van Essen, 2011), and that the parcellated
maps are highly stable across individual subjects. (The mean pairwise
Spearman rank correlation between subjects’ individual maps was pre-
viously found to be rho ¼ 0.94 (see Burt et al., 2018).)

2.8. Activity flow mapping

We used activity flow mapping – an empirical approach to model the
propagation of distributed activity across brain regions in data – to
evaluate cortical heterogeneity in distributed and localized processes. A
core assumption of activity flow mapping is that the local task-evoked
activity of a region is predicted by distributed neural processes (Cole
et al., 2016). Here we tested whether there were differences in activity
flow mapping predictions across cortical areas.

We estimated our resting-state FC weights using multiple linear
regression, as was previously reported in (Cole et al., 2016). The benefit
of using multiple linear regression to obtain the FC weights to a given
target region y (relative to pairwise correlation) is that it partials out the
time series of all other brain regions, while optimizing for prediction on
y. Specifically, FC weights for a target region y was obtained by fitting the
multiple linear regression model

y¼ β0 þ β1x1 þ :::þ βnxn þ ε (2)

where the time series of all other regions fx1; :::; xng were used as re-
gressors to predict region y, and coefficients fβ1; :::; βng corresponded to
the FC weights estimated to predict region y’s time series. (Note that in
the above equation n ¼ 359, since there are 360 parcels in the Glasser
atlas.)

To obtain activity flow-mapped predictions for a target region for a
given task, we mapped the task-evoked activations from all regions
(excluding the target region) to the target region (Cole et al., 2016).
Specifically, for a region y, the task-evoked activity prediction for a given
task condition was defined as

yi ¼ β1x1; i þ :::þ βnxn; i (3)

where yi is the activity flow prediction for region y during task condition
i, xn;i is the true task-evoked activation for region x during task condition
i, and βn reflects the FC weight from region n to i obtained from equation
(2).

Finally, to assess howwell a region was predicted through the activity
flow mapping procedure, we estimated the ‘activity flow mean absolute
error’ (activity flow MAE) across all task conditions i ¼ [1, …, 24].
Specifically, activity flow MAE for a region y was defined as

yMAE ¼
Pk

i¼1ðjyi � yijÞ
k

(4)

where yMAE indicates the activity flow MAE for region y, yi reflects the
true task activation for region y during condition i, and k ¼ 24, which
reflects the number of total task conditions (split among 7 tasks) in the
HCP data set.

2.9. Non-parametric statistical testing

All correlation-based statistical tests were performed using spatial
autocorrelation-preserving permutation tests that generated random
surrogate brainmaps (Alexander-Bloch et al., 2018; Burt et al., 2018). We
used the recently released BrainSMASH toolbox to generate 1000
4

surrogate brain maps for each variable of interest (e.g., task activation,
task FC change, myelin, intrinsic timescale, and activity flowmaps) (Burt
et al., 2020). P-values were estimated from the null distribution of cor-
relation values obtained by correlating each surrogate map with the
variable of interest. We used Spearman’s rank correlation as our test
statistic, though we obtained virtually identical results with Pearson’s
correlation.

2.10. Data and code availability

All code related to analyses in this study are published on GitHub (htt
ps://github.com/ColeLab/hierarchy2020). All data is publicly available
through the Human Connectome Project (http://www.humanconnecto
meproject.org) (Van Essen et al., 2013).

3. Results

3.1. Task-related activity and functional connectivity are differentiated
across the cortical hierarchy

Task-related activity and FC are commonly used to characterize
localized and distributed cognitive processes. Here we sought to evaluate
whether regional differences in localized and distributed processes was
related to macroscale cortical organization. Using task data collected
from the Human Connectome Project (HCP) across 24 distinct task
conditions, we directly compared how localized and distributed pro-
cesses are differentiated across cortex by comparing the regional task
activation strength and inter-region FC strength across multiple task
conditions (Fig. 1).

To identify which regions were primarily involved in localized pro-
cesses, we estimated the average magnitude (i.e., absolute value) of task-
evoked activity across 24 task conditions for every parcel in the Glasser
et al., (2016) atlas (Glasser et al., 2016). We found that unimodal regions
had significantly higher task activation magnitudes as compared to
transmodal regions, suggesting that unimodal areas respond more locally
to tasks (Fig. 2b,d; transmodal vs. unimodal, t175¼ �29.58, p < 10e-69;
replication set, t175 ¼ �27.07, p < 10e-63). Congruent with increased
local processes, we found that the FC of unimodal areas was also
significantly reduced relative to transmodal areas during task states
(Fig. 2c,e; transmodal vs. unimodal, FC difference¼ 0.02, t175 ¼ 18.91, p
< 10e-43; replication set, FC difference ¼ 0.03, t175 ¼ 20.63, p <

10e-47).
In a recent study, we found that the task-state FC of each region

decreased (relative to resting state), and the magnitude of FC reduction
was correlated with the magnitude of task activation increase (repro-
duced in Fig. 2c). In a computational model, these FC reductions could be
explained by the strengthening of a task-state attractor, which suppresses
background spontaneous activity to help increase the fidelity of task
signals (i.e., task-evoked activity) (Ito et al., 2019). Importantly, these
task-state correlation reductions are a phenomena that are commonly
observed in electrophysiology data (Cohen and Kohn, 2011; Doiron et al.,
2016), and have been proposed to reflect task-related information coding
properties (Averbeck et al., 2006; Bartolo et al., 2020; Bejjanki et al.,
2017; Zhang et al., 2019). Here we extended those results, and first
reproduced the finding that regions that increased their task-evoked
activations tended to decrease their task-state FC (Fig. 2f) (Ito et al.,
2019). This illustrated that localized (local task activations) and
distributed processes (region’s average FC) were negatively correlated
across cortex (Spearman’s rank correlation (rs) ¼ �0.26, bootstrapped
95% confidence intervals (CI95)¼ (�0.36,�0.16), p¼ 0.004; replication
set, rs ¼ �0.27, CI95 ¼ (�0.36, �0.17), p ¼ 0.002). We note that this
negative association also held when thresholding the FC matrices to
include only positive FC values (Supplementary Fig. 4). (All p-values for
correlation-based statistics for brain maps were obtained by using a
spatial autocorrelation-preserving permutation test that generates
random surrogate brain maps (see Methods) (Burt et al., 2020).)

https://github.com/ColeLab/hierarchy2020
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Fig. 1. Data analysis schematic for assessing localized versus distributed processes during multiple task states. a) Characterizing localized functionality by
estimating regional task activation changes. To identify the task activation change of each brain region, we estimated the task activation magnitude of each brain
region across 24 task conditions. Localized processes were operationally defined as the magnitude of task activation change relative to baseline (see Methods). b)
Characterizing a region’s distributed functionality by estimating the strength of its global FC strength relative to its resting-state FC. To identify the global FC change of
a region, we compared the task-state global FC and compared it relative to its resting-state global FC. Thus, a region’s reduced global FC during task states indicated
that it reflected more localized processes. c,d) To more simply compare localized and distributed processes across cortical areas, we mapped the previously described
functional network assignments (Ji et al., 2019) into transmodal and unimodal networks. Unimodal networks included: primary and secondary visual networks,
auditory network, and somatomotor network. Transmodal networks included all other networks.
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Importantly, the topographic changes in task activations and task-
state FC were associated with the recently-published resting-state
macroscale principal gradient (PG1), which provides a spatial framework
for characterizing unimodal to transmodal activity (Margulies et al.,
2016). Specifically, topographic changes in task activation magnitudes
were positively correlated with the PG1 map (Fig. 2g; rs ¼ 0.31, CI95 ¼
(0.22, 0.40), p¼ 0.004; replication set, rs ¼ 0.28, CI95 ¼ (0.17, 0.38), p¼
0.006), while task-state FC changes were negatively correlated with the
PG1 map (Fig. 2h; rs ¼ �0.58, CI95 ¼ (�0.63, �0.51), p < 0.001; repli-
cation set, rs ¼ �0.57, CI95 ¼ (�0.63,�0.51), p< 0.001). These findings
illustrated a dissociation of localized and distributed processes across
transmodal and unimodal networks, indicating that unimodal networks
respond to tasks more locally, while transmodal networks respond to
tasks more distributedly. Moreover, these changes in task-related activity
and FCwere associatedwith the principal macroscale gradient previously
observed from resting-state fMRI (Margulies et al., 2016), which suggests
a potential organizing principle underlying spontaneous and task-evoked
states.
5

3.2. Task-state functional cortical heterogeneity is related to intrinsic
timescales during resting state

The negative association between task-related activations and FC
changes illustrates the relationship between distributed and localized
processes within the cortex. However, it is unclear why such a functional
dichotomy exists. A previous study showed that the intrinsic timescales
across cortical areas follow anatomical connectivity maps in non-human
primates, suggesting that anatomical wiring organization and functional
timescale hierarchies are closely related (Murray et al., 2014). Moreover,
that same study indicated lower-order cortical areas tend to operate at
fast timescales, potentially supporting stimulus-/task-locked activity.
However, conclusions from Murray et al. (2014) were based on
non-human primate electrophysiology data. Thus, we first sought to
identify an intrinsic timescale hierarchy in human fMRI data, and addi-
tionally hypothesized that the dissociation of regional task activations
and FC changes were associated with topographical differences in the
cortical intrinsic timescale hierarchy.



Fig. 2. Dissociating localized versus distributed processes across the cortical hierarchy by estimating regional task activations and FC changes. a) The
resting-state principal macroscale gradient (PG1) from Margulies and colleagues, which provides a spatial framework to characterize unimodal to transmodal activity
(Margulies et al., 2016). b) Task activation magnitudes relative to baseline (absolute t-values), averaged across 24 task conditions. c) Averaged task FC changes for
each region relative to resting-state FC. d) The task activation magnitudes averaged within transmodal and unimodal regions. Unimodal regions had significantly
higher task activation magnitudes across multiple tasks relative to transmodal regions. Boxplots indicate the interquartile range of the distribution, dotted black line
indicates the mean, grey line indicates the median, and the distribution is visualized using a swarm plot. e) Averaged task FC changes (relative to resting state) for
transmodal and unimodal regions. In contrast to the task activation magnitude, unimodal regions significantly decreased their FC relative to transmodal regions. f) We
also reproduced a result from our previous study (Ito et al., 2019), demonstrating that regions with higher task-evoked activations decreased their FC more during task
states. g) Task activation magnitudes were positively correlated with PG1. h) Task FC changes were negatively correlated with the PG1. All p-values (for correlation
analyses) were estimated using a spatial autocorrelation-preserving permutation test to generate random surrogate brain maps (Burt et al., 2020). (*** ¼ p < 0.001, **
¼ p < 0.01, * ¼ p < 0.05).
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We measured the intrinsic timescale of brain regions using resting-
state fMRI. We fitted a nonlinear exponential decay function to the
empirically calculated autocorrelation function (100 timepoint lag), and
used the decay rate (τ) as the intrinsic timescale (Murray et al., 2014).
This intrinsic timescale represents the rate of decay (of the autocorrela-
tion function) to 0. (Results were consistent when fitting to shorter lags,
including 40 and 50 time points.) This meant that regions with a larger
decay parameter (τ) had a slower decay rate. (An alternative interpre-
tation is that regions with a longer timescale (larger τ) have more auto-
correlation in the time series and slower temporal fluctuations.) We
found that transmodal regions had significantly slower intrinsic time-
scales than unimodal regions (Fig. 3c; τ difference¼ 0.99, t175 ¼ 19.33, p
< 10e-44; replication set τ difference ¼ 0.96, t175 ¼ 22.12, p < 10e-51).
These findings corroborate a previous study in non-human primate
electrophysiology reporting that lower-order cortical areas tend to
6

operate at fast timescales, while higher-order areas tend to operate at
slow timescales (Murray et al., 2014).

Other studies demonstrated that higher-order cortical regions inte-
grate information at slower timescales relative to lower-order regions
during naturalistic/continuous stimuli (Baldassano et al., 2017; Hasson
et al., 2008; Honey et al., 2012). It is thought that regions operating at
slower intrinsic timescales are more likely to integrate information from
other regions, similar to the feedforward and compressive temporal
summation principles observed in visual cortex (Cocchi et al., 2016; Zhou
et al., 2017). In contrast, regions operating at fast timescales should
respond in a more stimulus-/task-locked manner. Thus, we hypothesized
that regions with faster intrinsic timescales are more likely to have higher
task activation magnitudes (given their likelihood of having more stim-
ulus-/task-locked neural responses), while simultaneously reducing their
FC strength due to a lesser ability to temporally integrate information



Fig. 3. Hierarchy of intrinsic timescales estimated during resting-state fMRI explains regional differences in task activations and FC. a) The intrinsic
timescale for each cortical region. We estimated the intrinsic timescale of each region by fitting a 3-parameter exponential decay function to the autocorrelation
function obtained during resting-state fMRI (Murray et al., 2014). b) The estimated exponential decay functions for two example regions with fast (blue) and slow
(red) timescales. Fits were estimated for each subject separately. Error bars denote the 95% confidence interval (across subjects). c) The intrinsic timescale (i.e., the
rate of decay) was significantly greater for transmodal regions relative to unimodal regions. Boxplots indicate the interquartile range of the distribution, dotted black
line indicates the mean, grey line indicates the median, and the distribution is visualized using a swarm plot. d) Across the cortical hierarchy, the intrinsic timescale
was negatively correlated with task activation magnitude across multiple tasks, consistent with the notion that regions with fast timescales respond in a
stimulus/task-locked manner. e) In contrast, the intrinsic timescale was positively correlated with the task-state FC change, consistent with the hypothesis that regions
with slow timescales have a larger temporal receptive field and can integrate information from lower-order cortical areas. All p-values (for correlation analyses) were
estimated using a spatial autocorrelation-preserving permutation test to generate random surrogate brain maps. (*** ¼ p < 0.001, ** ¼ p < 0.01, * ¼ p < 0.05).
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from other brain regions. Indeed, we found that across the cortical hi-
erarchy, regions with faster timescales (i.e., smaller τ values) had larger
task activation magnitudes (Fig. 3d; rs ¼�0.29, CI95 ¼ (�0.38,�0.19), p
¼ 0.002; replication set, rs ¼ �0.29, CI95 ¼ (�0.39, �0.19), p < 0.001).
In addition, we found that regions with faster timescales had also reduced
their task-state FCmore (Fig. 3e; rs¼ 0.41, CI95¼ (0.32, 0.49), p< 0.001;
replication set, rs ¼ 0.43, CI95 ¼ (0.34, 0.52), p < 0.001).
3.3. Task-state functional cortical heterogeneity is related to local myelin
density

The above results show that hierarchical differences of intrinsic
timescales estimated during resting state correspond to differences in
task-related activation and FC changes. However, previous reports also
indicate that such hierarchical cortical heterogeneity may be due to
structural, genetic, and synaptic differences (Burt et al., 2018; Demirtaş
et al., 2019; Huntenburg et al., 2018; V�azquez-Rodríguez et al., 2019;
Wang, 2020). Thus, we sought to demonstrate that the hierarchy of
intrinsic timescales in human fMRI is related to changes in structural
differences (i.e., myelination content), while extending these associa-
tions to incorporate the cortical heterogeneity in localized and distrib-
uted processes.

Theoretical work has demonstrated that strong local coupling of
excitatory-inhibitory (E-I) connectivity generate fast neural dynamics
(Hennequin et al., 2018, 2017; Ito et al., 2019; Lombardi et al., 2017;
Wang et al., 2019). This has been corroborated in recent empirical
studies, where cortical heterogeneity of local E-I coupling (which was
highly similar to regional myelin content) produced simulated neural
dynamics that closely matched large-scale human fMRI data (Demirtaş
et al., 2019). Thus, we hypothesized that cortical heterogeneity in myelin
7

content (Fig. 4a) would be related to both the hierarchy of intrinsic
timescales and differences in localized and distributed processes.

We found a negative association between regional myelin content and
the intrinsic timescale across cortical regions (Fig. 4b; rs ¼ �0.47, CI95 ¼
(�0.55, �0.37), p < 0.001, replication set, rs ¼ �0.49, CI95 ¼ (�0.57,
�0.40), p < 0.001). This suggests that regions with higher myelin con-
tent (i.e., local connectivity), such as unimodal areas, operate at faster
intrinsic timescales. In addition, we found that regional myelin content
was positively correlated with the magnitude of task activations (Fig. 4c;
rs ¼ 0.43, CI95 ¼ (0.34, 0.51), p< 0.001; replication set, rs ¼ 0.41, CI95 ¼
(0.32, 0.50), p < 0.001), while negatively correlated with the reduction
of a region’s average task FC (Fig. 4d; rs ¼ �0.44, CI95 ¼ (�0.51,�0.35),
p < 0.001; replication set, rs ¼ �0.46, CI95 ¼ (�0.54, �0.37), p < 10e-
19). Together, these results suggest that unimodal regions have more
local coupling (i.e., myelin content), driving faster intrinsic timescales
during rest and task-locked neural responses during tasks. In contrast, our
results suggest that transmodal regions have less local E-I coupling,
facilitating slower intrinsic timescales (i.e., wider temporal receptive
field) and weaker task-state FC changes.
3.4. Dissociation of activity and functional connectivity across cortex is not
dependent on task-based regression

The previous results used a standard task general linear model (GLM)
to estimate task activations while using the residual time series after
removing the main effect of task for FC analyses (Cole et al., 2019).
However, it is possible that the estimated activity from a standard GLM
coefficient may not appropriately capture activity associated with the
task (e.g., due to linear approximation of a task GLM). This is because
standard task GLM coefficients are extracted from a stationary task block



Fig. 4. Intrinsic and task-state differences in hierarchical cortical organization are associated to local myelin density. a) Cortical myelin content within each
parcel estimated from a T1w/T2w contrast map (Burt et al., 2018). b) Across cortical regions, myelin content and the intrinsic timescale are negatively related,
suggesting that lower-order brain regions operate at faster intrinsic timescales. c) Across cortical regions, myelin content is positively correlated with the magnitude of
task-evoked activations, suggesting that lower-order brain regions tend to have higher task-evoked activations (consistent with stimulus-locked activity). d) Across
cortical regions, myelin content is correlated with task-state FC decreases, suggesting that higher-order brain regions change their task FC strength less (consistent with
information integration with other brain regions). All p-values were estimated using a spatial autocorrelation-preserving permutation test to generate random sur-
rogate brain maps. (*** ¼ p < 0.001, ** ¼ p < 0.01, * ¼ p < 0.05).

Fig. 5. Summary of positive and negative associations between the resting-state principal gradient, task activations, task FC change, intrinsic timescales,
and myelin content using the standard task GLM and the peak (block) activation approaches (Figures for the replication cohort are in Supplementary Fig. 1.). a)
The standard task GLM approach for the exploratory cohort. We use standard task GLM modeling to estimate activation coefficients for each brain region, and FIR task
modeling to remove the mean task-evoked response prior to computing task FC. Note that all measures reported in this study were strongly associated with PG1, which
was hypothesized to reflect hierarchical organization in the brain (Margulies et al., 2016). b) The peak activation approach for the exploratory cohort. We estimate the
peak activation magnitude at each block (across all blocks) without task regression. Task activations are estimated by averaging peak magnitudes across all blocks for
each brain region. Task FC estimates are obtained by correlating block-to-block variance (using peak magnitudes) between all pairs of brain regions. Positive and
negative association strengths are typically stronger using the peak activation approach. All correlations were found to be statistically significant using an
FDR-corrected p-value of p < 0.01. All p-values were estimated using a spatial autocorrelation-preserving permutation test to generate random surrogate brain maps.
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design convolved with a canonical hemodynamic response function
(Friston et al., 1994). Similarly, the FC estimates we used capture the
timepoint-to-timepoint variance that is left over after task regression.
However, other approaches have illustrated that FC can also be obtained
without using the residual time series by estimating the trial-to-trial (or
block-to-block) variance of task-evoked activation levels (Ito et al., 2019;
Rissman et al., 2004). Thus, we sought to demonstrate that the negative
relationship between mean task-related activity and FC observed above
was not dependent on any task GLM (or FIR) modeling.

Using preprocessed fMRI time series (without applying any task GLM
or FIR model), we obtained the peak activation value within each task
block relative to baseline for each block across the 7 HCP tasks (see
Methods). These values represented the peak activation value for each
region within each task block, independent of whether the activity was
sustained across the entire block. To obtain the task activation magnitude
Fig. 6. Better prediction of task-evoked activations for transmodal regions tha
algorithm, which was originally derived from connectionist principles (Cole et al., 20
predicted by summing the task-evoked activations of all other brain regions weighted
task-evoked activity of region j is generated from a distributed process, rather than fr
better predicted via activity flow mapping, we can characterize the mean absolute
ditions. This evaluates the mean absolute error of the activity flow mapping algorith
lower activity flow MAE relative to unimodal regions. Boxplots indicate the interqu
indicates the median, and the distribution is visualized using a swarm plot. d) We fou
flow MAE (i.e., slower intrinsic timescales have better activity flow predictions, con
formation integration from different regions). e) We found a positive association betw
the notion that lower-order cortical regions process information more locally (i.e., re
MAE was positively/negatively associated with task activation magnitude/FC chang

9

for a cortical region, we averaged the activation peaks across all blocks
for every task condition relative to baseline. To obtain the task-state FC
change for a pair of brain regions, we computed the correlation of peak
activations across all blocks (rather than time points) between pairs of
brain regions and evaluated the FC change relative to resting-state (see
Methods). The estimated task FC is conceptually similar to the beta series
FC approach (Rissman et al., 2004), which captures event-to-event
variance rather than timepoint-to-timepoint variance. (However, rather
than using the estimated beta coefficient from a task GLM, we use the
peak BOLD value during each event.)

We found that all associations (both positive and negative) between
activity, FC change, intrinsic timescales, and myelin content were repli-
cated using the peak activation approach (Fig. 5b). Moreover, the asso-
ciations observedwith the peak activation approachwere higher than the
standard task GLM approach to measure task activations and FC change
n unimodal regions via activity flow mapping. a) The activity flow mapping
16; Ito et al., 2020). Briefly, the task-evoked activation of a brain region j can be
by their FC weights with region j. A core assumption of this algorithm is that the
om a local (or internal) process. b) To evaluate whether some brain regions are
error of the activity flow predictions (i.e., ‘activity flow MAE’) across task con-
m for every brain region. c) We find that transmodal regions have significantly
artile range of the distribution, dotted black line indicates the mean, grey line
nd a negative association between the intrinsic timescale of regions and activity
sistent with the view that a wider temporal receptive field facilitates better in-
een the myelin content of regions and activity flow MAE. This is consistent with
flecting internally generated activity). f,g) Across cortical regions, activity flow
e. (*** ¼ p < 0.0001, ** ¼ p < 0.01, * ¼ p < 0.05).
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(Fig. 5a). These results demonstrate that the dissociation of task activa-
tions and task FC is independent of task regression methods. Specifically,
task FC can be dissociated from task activations at both timepoint-to-
timepoint and block-to-block temporal scales.

3.5. Improved activity flow mapping predictions of transmodal areas due to
distributed processes

Previous work from our group has demonstrated that the task-evoked
activity of distributed brain regions can be predicted by modeling ‘ac-
tivity flow’ processes over functional weights estimated from resting-
state fMRI (Cole et al., 2016; Ito et al., 2020, 2017). These activity
flow processes are modeled by predicting a brain region’s task-evoked
activation level by summing the task-evoked activations of all other
brain regions weighted by their resting-state FC weights to the predicted
region (Fig. 6a; see Methods). Specifically, we empirically estimate FC
weights (from resting-state data) then simulate the propagation of ac-
tivity of time-resolved task-evoked activations over those FC weights to
predict activity in each brain region. The simulation of ‘activity flow’ is
equivalent to simulating artificial neural network computations
(formally called the propagation rule) (Rumelhart et al., 1986). Instead of
using correlation to estimate FC weights, we employ multiple linear
regression, since it conditions on all other brain regions when estimating
the weights between any two brain regions, reducing causal confounds
(Cole et al., 2016).

However, a core assumption of activity flow mapping is that the ac-
tivity of a brain region is the result of distributed processes, since its
activity can be predicted from the activity of other brain regions. How-
ever, the present results suggest that there is hierarchical heterogeneity
in localized and distributed processes, as evidenced by differences in
regional task activations and FC changes (Fig. 2). Thus, consistent with
the dichotomy of localized and distributed functional processes, we hy-
pothesized that regions more involved in distributed processes (e.g.,
transmodal regions) would be better predicted by activity flow mapping
relative to regions with more localized processes (e.g., unimodal re-
gions). This implies that the localized processes in unimodal regions are
not as well explained by distributed activations.

We applied the activity flow algorithm to predict the task-evoked
activation of every brain for every task condition. To assess how well a
target brain region could be predicted by activity flow from other brain
regions, we computed the absolute value of the error between the pre-
dicted and actual task-evoked activity for each task condition (activity
flow mean absolute error (MAE)). We then averaged across all task
conditions (i.e., the mean absolute error of activity flow predictions),
providing an estimate of the activity flow MAE for each brain region
(Fig. 6b). Thus, activity flow MAE was a measure of how well a target
region’s activity could be predicted as a function of distributed processes.
(Lower activity flow MAE corresponded to better prediction.) We found
that the average activity flow MAE was significantly lower in transmodal
regions relative to unimodal regions, suggesting that transmodal regions
were better predicted by activity flow mapping (Fig. 6c; t175 ¼ -6.13, p <

10e-08; replication set, t175 ¼ -3.27, p¼ 0.001). We then correlated task-
evoked activity flow MAE with two of the previous task-free estimates
that describe hierarchical cortical organization: the intrinsic timescale
and myelin content. Indeed, we found that the intrinsic timescale was
negatively correlated with the amount of activity flow MAE across
cortical areas (Fig. 6d; rs ¼ �0.34, CI95 ¼ (�0.43, �0.24), p < 0.001;
replication set, rs¼�0.38, CI95¼ (�0.47,�0.28), p< 0.001), suggesting
that it was harder to predict the task activations of regions with faster
operating timescales. Similarly, we found that myelin content was
negatively correlated with activity flow MAE (Fig. 6e; rs ¼ 0.34, CI95 ¼
(0.25, 0.43), p¼ 0.001; replication set, rs ¼ 0.31, CI95 ¼ (0.21, 0.42), p¼
0.001), indicating that regions with more local coupling (higher myeli-
nation) are harder to predict via distributed FC weights. We also found
that activity flow MAE in each region was positively correlated with its
true task activation magnitude (Fig. 6f; rs ¼ 0.48, CI95¼ (0.39, 0.56), p<
10
0.001; replication set, rs ¼ 0.42, CI95 ¼ (0.32, 0.51), p < 0.001), while
simultaneously being negatively correlated with the task-state FC change
in each region (Fig. 6g; rs ¼ �0.34, CI95 ¼ (�0.43, �0.24), p < 0.001;
replication set, rs ¼ �0.32, CI95 ¼ (�0.41, �0.22), p < 0.001). Together,
these results are congruent with the overall hypothesis that unimodal
regions reflect more local processes, while transmodal regions reflect
more distributed processes.

4. Discussion

Our results provide evidence for a cortical hierarchy of localized and
distributed processes revealed by differences in task activations, task FC
changes, intrinsic timescales, and myelin content. We found that across
multiple tasks, regions with high-levels of stimulus-/task-locked activity
tended to reduce their global FC, suggesting they processed information
more locally. Specifically, unimodal regions tended to activate and
reduce their FC during task states relative to transmodal regions,
consistent with the notion that unimodal regions respond more locally,
while transmodal regions respond distributedly (Cole et al., 2013; Hun-
tenburg et al., 2018). Moreover, these differences were linked to several
intrinsic (task-free) properties of macroscale cortical organization: the
resting-state principal gradient (Margulies et al., 2016), hierarchical
timescale organization (Murray et al., 2014), and cortical myelination
(Burt et al., 2018; Glasser and Van Essen, 2011). Since fMRI measures the
blood-oxygen-level-dependent (BOLD) signal, which is indirectly related
to metabolic and neural activity (Logothetis et al., 2001; Ma et al., 2016),
our findings suggest that cortical heterogeneity of intrinsic properties
may drive differences in localized and distributed neural and/or meta-
bolic processes.

We found a hierarchy of intrinsic timescales from unimodal to
transmodal regions operating at fast to slow timescales, consistent with
previous reports (Murray et al., 2014). Moreover, we found that the hi-
erarchy of timescales was negatively correlated with local processes (task
activation magnitudes) and positively correlated with distributed pro-
cesses (task FC change). This indicated that regions with faster intrinsic
timescales (primarily unimodal regions) activated in a stim-
ulus-/task-locked manner and reduced their FC more during task.

To assess which regions processed informationmore distributedly, we
used our previously-developed activity flow mapping approach, which
assumes local neural activity can be predicted from the propagation of
activity flow from other brain areas (Cole et al., 2016). We found that
transmodal regions yielded better activity flow predictions across mul-
tiple tasks, indicating that the activity of transmodal regions results from
distributed processing. Importantly, the accuracy of task-evoked activity
predictions was correlated with the hierarchy of the intrinsic timescale
organization, suggesting that regions with slower timescales were better
predicted by distributed activity flow processes. These findings are
consistent with the notion that regions with slower timescales have a
wider temporal receptive field to integrate information from other brain
regions (Baldassano et al., 2017; Cocchi et al., 2016; Hasson et al., 2008;
Honey et al., 2012).

We found that regional myelin content was correlated with the
intrinsic timescale (negatively), task activation magnitudes (positively),
and task FC changes (negatively). This is consistent with previous studies
suggesting an anatomical basis for hierarchical cortical functionality in
models predicting resting-state functional network organization (Burt
et al., 2018; Demirtaş et al., 2019; Wang et al., 2019) and studies
reporting gradients of structure-function connectivity tethering (Baum
et al., 2020; V�azquez-Rodríguez et al., 2019). Our results extend those
previous findings to suggest an anatomical basis for the hierarchy of
timescale organization as well as differences in local and distributed
processing during task states. Specifically, regions with higher white
matter content tended to operate at faster timescales and process infor-
mation more locally.

Regional myelin content has recently been linked to anatomical hi-
erarchies and cortical gradients of gene expression, indicating a potential
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link between microscale anatomy and macroscale functional organiza-
tion (Burt et al., 2018). In recent work, regional myelin content was
correlated with the degree of local (regional) E-I coupling parameters in a
whole-brain biophysical network model that was parameterized to
reproduce resting-state dynamics (Demirtaş et al., 2019). Thus, myelin
content appears to reflect the degree of local E-I coupling (Wang, 2020).
Independently, other theoretical work showed that changes to local E-I
coupling directly influences the timescale and frequency characteristics
of neural activity, with faster timescales associated with stronger inhib-
itory feedback (i.e., increased E-I coupling) (Lombardi et al., 2017). This
finding provided evidence for a hypothesis that links myelin content and
intrinsic timescales: Regional differences in myelin content reflect dif-
ferences in E-I coupling, which in turn may govern intrinsic timescale
properties. Our results provide some evidence for this hypothesis, finding
that higher myelin content was associated with faster timescales. How-
ever, our findings were only associational, and as recently discussed,
future work will need to directly link regional myelin content, E-I
coupling, and intrinsic timescale behavior (Wang, 2020).

A recent study from our group illustrated that task-related activity
(task signal) and background spontaneous activity (neural noise) can be
effectively dissociated when removing the main effect of task from task
time series (Ito et al., 2019). The separation of task ‘signal’ from neural
‘noise’ enhances the interpretation of ongoing cognitive processes asso-
ciated during tasks, and has been the standard approach in electro-
physiology for decades (referred to as signal and noise correlations,
respectively) (Aertsen et al., 1989; Cohen and Kohn, 2011). (It should be
noted that the term noise correlations does not imply a lack of neural
information in a time series, but rather the isolation of spontaneous
correlations during task states.) Under this interpretation, our results
suggest that regions that tend to activate during task states suppress
background neural noise. The suppression of background correlated
noise supports increased fidelity of the task signal (i.e., mean task ac-
tivity), consistent with previous reports in the electrophysiology litera-
ture (Baria et al., 2017; Churchland et al., 2011, 2012; Cohen and Kohn,
2011).

There is a concern that separating the main task effect from the time
series may artificially induce a negative association of task activity and
task FC. However, removing the main effect of task would not artificially
reduce the correlation of distributed spontaneous activity because signal
and noise are statistically orthogonal sources of a data distribution
(MacKay, 2003). Importantly, failure to remove the task signal prior to
estimating task FC would conflate signal and noise correlations, weak-
ening the strength of possible inferences (Cole et al., 2019; Reid et al.,
2019). Yet independent of these concerns, we demonstrated that task
activity and task FC can be dissociated without using a task GLM or FIR
model to separate the main effect of task from the underlying time series.
This approach isolates block-to-block/event-to-event variance by esti-
mating the peak BOLD activation during each task block. The mean task
activationmagnitude is then captured by the average across blocks, while
the task FC is captured by correlating the peaks between brain regions
(across blocks). (This latter approach is similar to computing task FC
using a beta series correlation (Rissman et al., 2004).)

In conclusion, we provide evidence that cortical differences in task-
related activity and FC dynamics are differentially related to the hierar-
chy of intrinsic cortical organization. Overall, we found that unimodal
regions reflect more local processes, while transmodal regions reflect
more distributed processes. We note that the negative relationship be-
tween local and distributed processes did not have to be true; it could
have been the case that regions with high amounts of local activity
actually increased their distributed interactions during tasks, suggesting
the existence of hub nodes that respond both locally and distributedly.
But in contrast to this alternative hypothesis, our findings are consistent
with the notion that transmodal regions integrate information from
lower-order regions due to a wider temporal receptive field, while
unimodal regions respond to tasks in a stimulus-/task-locked manner.
Finally, these differences in localized and distributed were related to
11
differences in the anatomical hierarchy as measured by cortical myelin
content. We expect these findings to spur additional investigations into
characterizing hierarchical cortical function during resting and task
states.
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