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The rapid development of artificial intelligence (AI) systems has created 
an urgent need for their scientific quantification. While their fluency 
across a variety of domains is impressive, AI systems fall short on tests 
requiring algorithmic reasoning—a glaring limitation, given the necessity 
for interpretable and reliable technology. Despite a surge in reasoning 
benchmarks emerging from the academic community, no theoretical 
framework exists to quantify algorithmic reasoning in AI systems. Here 
we adopt a framework from computational complexity theory to quantify 
algorithmic generalization using algebraic expressions: algebraic circuit 
complexity. Algebraic circuit complexity theory—the study of algebraic 
expressions as circuit models—is a natural framework for studying the 
complexity of algorithmic computation. Algebraic circuit complexity 
enables the study of generalization by defining benchmarks in terms of the 
computational requirements for solving a problem. Moreover, algebraic 
circuits are generic mathematical objects; an arbitrarily large number 
of samples can be generated for a specified circuit, making it an ideal 
experimental sandbox for the data-hungry models that are used today.  
In this Perspective, we adopt tools from algebraic circuit complexity, apply 
them to formalize a science of algorithmic generalization, and address key 
challenges for its successful application to AI science.

The recent evolution of modern artificial intelligence (AI) systems and 
large language models (LLMs) has led to the speculation that these 
systems may reason1–4. However, owing to challenge of evaluating 
large models trained on massive pretraining datasets5, it is difficult to 
evaluate whether such models are truly exhibiting algorithmic reason-
ing abilities, or whether they instead regurgitate plausible text from 
their pretraining data6,7. This ambiguity has led to a deluge of reason-
ing benchmarks8–17. Despite these efforts, objectively quantifying the 
complexity of reasoning problems is difficult; most of these experi-
ments are ad hoc, and designed without a framework to quantify and 
verify the algorithmic complexity of reasoning problems. However, 
approaches in computational complexity theory, a field within theo-
retical computer science, have made it possible to explicitly measure 
a problem’s algorithmic difficulty, paving the way for generalization 

tests rooted in quantifiable measures of complexity. In this Perspec-
tive, we bridge algorithmic reasoning with a decades-old branch of 
computational complexity—circuit complexity theory—to provide a 
theoretical link to studying the complexity of algorithmic computa-
tion in modern AI systems.

Recently, there has been increased interest in studying modern 
AI models through arithmetic and compositional tasks9,12,18–27. Com-
positional tasks are problems rooted in a long history from the early 
twentieth century28,29 that are generated by recombining a basis set of 
atomic elements to form a variety of task combinations (for a review, 
see Russin et al.30). (Arithmetic problems are compositional; they are 
composed of atomic elements (numbers and operators), and can 
be recomposed to generate novel expressions and problems.) For 
modern AI systems, compositional tasks can serve as useful reasoning 
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complexity as a gateway into studying algorithmic generalization 
more broadly. We introduce the core components of algebraic circuits, 
address how they can be leveraged to study algorithmic generalization, 
and discuss several key open theoretical and empirical challenges.

Algebraic circuits
Algebraic circuit complexity studies algebraic expressions as comput-
able circuit models. There has been a substantial amount of recent 
machine learning research studying arithmetic generalization, a key 
algorithmic ability. While important and insightful, most of those stud-
ies primarily focus on a restricted set of algebraic problems, which we 
will illustrate later18,19,21,24,39. Below, we provide definitions of algebraic 
circuits that will place previous work within a broader mathematical 
framework. Our goal is to provide the tools to quantify model gener-
alization through circuit complexity, rather than ad hoc goals such as 
length generalization.

Definition
(For a more formal definition, see Shpilka and Yehudayoff42 or Bürgis-
ser et al.43.) An algebraic circuit C represents a polynomial expression 
as a directed acyclic graph, composed of gates v and edges e. Input 
gates, vX and v𝔽𝔽, are defined as either variables (for example, 
X = {x1, …, xn}) or elements in a field 𝔽𝔽 (for example, ℝ), respectively. 
Input gates have a fan-in (in-degree) of 0. All other gates are operators: 
a sum gate (v+) or a product gate (v×). In this Perspective, we restrict 
the fan-in of operator gates to 2, as is standard42. For our purposes, this 
ensures that there is the same number of gates in a circuit model with 
its corresponding representation as a string of tokens, which simplifies 
downstream analyses (for example, the analysis in Fig. 6). Operator 
gates have a fan-out (out-degree) of either 1 or 0. If the fan-out of an 
operator gate is 0, then it is the output gate of that polynomial.

Properties
An algebraic circuit C has two main algorithmic complexity measures: 
size s and depth d (see Table 1 for a summary of all properties). The size 
s of a circuit refers to the number of edges e in C, and corresponds to 
algorithmic space complexity. The depth d of a circuit refers to the 
longest path from an input gate to the output gate, and corresponds 
to algorithmic time complexity. We can denote a subcircuit Cv of C, 
which computes the polynomial fv rooted at gate v. Another important 
property of an algebraic circuit is its degree (that is, the degree of a 
polynomial). The degree of a circuit (or a subcircuit) can be computed 
by measuring the degree of the gate v, denoted deg(v). Elements in a 
field 𝔽𝔽 are of degree 0, input variables x ∈ X have degree 1, the degree 
of an sum gate (+) is determined by the degrees of its inputs u, v such 
that deg(u + v) = max(deg(u), deg(v)), and the degree of a product gate 
(×) is determined by deg(u × v) = deg(u) + deg(v).

benchmarks as they require (1) abstraction, (2) logical and verifiable 
application of rules or axioms, and (3) precise problem-solving and 
rigour. Critically, these paradigms have provided reliable ways to elicit 
failure modes in transformer-based AI models for specific forms of 
compositional generalization. For example, a number of studies have 
demonstrated the difficulty of ‘length generalization’—generalizing 
to problems of longer length than seen during training19,21,26,31. Other 
researchers have also introduced various notions (for example, sys-
tematicity and productivity) in an effort to taxonomize different forms 
of compositionality9,32–35. By contrast, the formalisms from circuit com-
plexity theory provide a set of tools that can be applied to quantify algo-
rithmic generalization—generalization over algorithms specified by 
circuits and their associated measures of complexity, such as space or 
time complexity. (Structural properties of circuits correspond directly 
to algorithmic requirements to compute that problem.) Moreover, for-
malizing problems through a circuit complexity framework provides 
a theoretically grounded framework for the increasingly popular yet 
nascent empirical evaluations in AI systems that use arithmetic and 
compositional tasks18,19,21–24,36–41. Although we focus on formalizing 
algebraic problems through the lens of circuit complexity (that is, 
algebraic circuit complexity) due to the widespread use of arithmetic 
problems to evaluate modern AI systems, the more general framework 
of circuits can be similarly extended to other algorithmic problems.

A large class of algorithmic problems can be studied with algebraic 
expressions42,43. Algebraic circuit complexity theory formalizes the 
evaluation of algebraic expressions through algorithms encoded as 
computable circuits (that is, directed acyclic graphs; Fig. 1). This for-
malization is well established in computational complexity theory, the 
branch of theoretical computer science concerned with quantifying 
the difficulty of computational algorithms and the resources required 
to solve them44. Importantly, formalizing computational problems in 
terms of circuits is the leading approach to empirically quantify their 
complexity. Unlike other notions of complexity, such as Kolmogorov 
complexity in algorithmic information theory (which is incomputable), 
notions developed in complexity theory for circuits are explicitly 
computable and determined by their shape and structure45. Thus, the 
tools of circuit complexity can formalize notions of generalization over 
algorithms by defining benchmarks in terms of their circuit properties. 
Furthermore, algebraic circuits are generic mathematical objects; 
they can be represented from a variety of mathematical perspectives 
(geometry, topology and so on), providing useful interpretations in 
other domains. Algebraic circuits are therefore well situated to inves-
tigate algorithmic generalization—the problems are computable and 
verifiable, large datasets can be straightforwardly generated from 
circuit specifications, and new models can be developed that address 
specific failure modes within this framework. In the ensuing sections, 
we provide a blueprint for the successful adoption of algebraic circuit 
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Fig. 1 | Examples of algebraic expressions represented as circuits.  
a, A two-operand addition circuit (input gates are sampled from a field 𝔽𝔽).  
b, A three-operand addition circuit (input gates are sampled from the set of 
variables xi ∈ X rather than 𝔽𝔽). c,d, A mathematically equivalent pair of circuits, 

but represented as a factorized expression (c) and its a monomial expansion (d). 
Notably, despite their mathematical equivalence, the circuit representations are 
distinct. e, A polynomial of depth 4 and size 12.
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Figure 1 provides a few simple examples of algebraic circuits.  
A circuit representation of an algebraic expression provides a concrete 
algorithm for computing a polynomial, with some circuits requiring 
more computation than others (for example, determined by size or 
depth). Furthermore, a circuit description can provide explicit differ-
ences in required computation for polynomials that are mathemati-
cally equivalent (for example, Fig. 1c,d). Such a formalization can be 
useful to study how different representations of equivalent algebraic 
expressions can lead to different levels of generalization, or how syn-
tax relates to semantics in formal languages. The recent studies in 
arithmetic generalization in AI models focus on the simplest circuit 
representations of algebraic problems (problems analogous to Fig. 1a, 
but varying the magnitude of the field elements, for example, train 
on small digit numbers, test on large digit numbers). The language of 
circuit complexity can provide more interesting and flexible ways to 
investigate generalization across circuit complexity classes.

Towards a science of generalization with  
algebraic circuits
A recent study concluded that the behaviour of LLMs is a function of 
the problems they are trained to solve25. It is difficult to identify what 
the ‘problems’ are when the pretraining corpus is natural language 
text derived from the internet. A theoretically coherent alternative 
to quantify AI systems is to select problems for which (1) complexity 
is quantifiable and (2) arbitrarily large datasets can be systematically 
generated. Algebraic circuits satisfy both of these constraints.

Although recent papers have demonstrated an increased inter-
est in using arithmetic tasks to quantify generalization, preliminary 
approaches have been theoretically limited. As alluded to above, 
many of the recent papers evaluating length generalization in arith-
metic tasks train on two-variable addition (or multiplication), and 
test on the same circuit class but sample field elements that are larger 
in magnitude19–21,23,26,39,41 (Fig. 2a). Others focus on a more complex 
form of generalization, that is, addition or multiplication on problems 
with a greater number of variables, which is equivalent to increasing 
the circuit size and depth (Fig. 2b; for example, a modular arithmetic 
task36). While useful and informative, both these tests of generalization 
scratch the surface of generalization metrics that can be devised with 
algebraic circuits.

The importance of learning composable functions
We first define algorithmic generalization (Box 1), and consider the 
importance of learning algorithmically. The ability to generalize algo-
rithmically is one of the most challenging problems in AI, and is a 
requirement for robust reasoning and planning. Like algebraic circuits, 
several previous papers formulated algorithmic tasks as computing a 
path through a directed graph or circuit11,13,24,46. Importantly, learning 
an algorithmic task requires (1) decomposing and abstracting the 

individual functions (for example, gates) of a circuit, and (2) under-
standing how they can be recomposed via edges to produce novel 
circuits (for example, function composition). Algebra is a natural lan-
guage to study algorithmic generalization as it can be encoded as a 
circuit, and requires both abstraction and function composition. 
Moreover, in contrast to other compositional approaches (for example, 
regular or context-free grammars36,47), algebraic problems encompass 
an infinite vocabulary (for example, ℝ) with an expressive grammar 
determined by its axioms, making it well suited for machine learning 
algorithms that require many training samples. In the following section, 
we propose an algorithmic generalization framework in terms of alge-
braic circuits.

Circuit divergence as a metric of generalization
The language of algebraic circuits provides quantitative metrics to 
formalize generalization in terms of algorithmic complexity, as circuit 
structure directly corresponds to algorithmic properties. In particu-
lar, generalization of AI systems can be quantified in terms of circuit 
divergence—the divergence of circuit parameters between algebraic 
circuits employed during training and testing (Fig. 3). This emphasis on 
characterizing the algorithmic properties of problems complements 
previous work focused on establishing metrics of compositionality 
based on the degree of subgraph overlap in training and testing sets. 
One particularly relevant metric is maximum compound divergence 
(MCD) introduced by Keysers et al.17, which measures the divergence 
of the frequency distribution of compositional subgraphs between 
the training and testing sets. While Keysers et al.17 demonstrated the 
empirical relevance of MCD on generalization performance, here we 
emphasize the importance of designing training and testing partitions 
according to the distribution of algorithmic complexity (that is, circuit) 
properties. This contrasts with MCD, which focused on providing a 
single summary statistic that, although empirically useful, does not 
distinguish between algorithmic properties. Specifically, designing 
benchmarks by manipulating circuit size (versus depth) enables the 
characterization of generalization over algorithmic size (versus time) 
complexity. This in turn can help practitioners isolate how specific 
architectural components of models map onto algorithmic capabilities: 
for example, circuit depth of a problem typically relates to the number 
of layers of a transformer, while circuit size relates to the degree of 
parallelization, such as context length size for transformers48.

Given a model M, we seek to characterize its generalization per-
formance M(Ctest|𝒞𝒞), where Ctest is a test circuit, and 𝒞𝒞 = 𝒞C1,… ,Ck} is a 
family of training circuits. We define circuit divergence as the difference 
between quantifiable circuit properties between train and test distribu-
tions. Here we emphasize five important circuit properties to measure 
divergences: size s, depth d, the polynomial degree, the sampling of a 
field 𝔽𝔽, and the number of variables ∣X∣. By quantifying the properties 
of circuits in both the training and testing sets, circuit divergence can 
be explicitly measured along these dimensions. In the following sec-
tions, we provide several examples for which tests of generalization 
can be constructed through the manipulation of circuit divergence.

Generalization benchmarks
In this section, we illustrate the flexibility of algebraic circuits in design-
ing meaningful AI benchmarks. To demonstrate the generality of alge-
braic circuits, we begin by providing benchmarks that are analogous 
to popular tests of compositional generalization: systematicity and 
productivity9. We subsequently introduce novel, more challenging 
problems that can be used to evaluate more general types of algorithmic 
computation and abstraction. Finally, we demonstrate an approach to 
reformulate tests of algorithmic generalization for pretrained LLMs.

Compositional generalization with algebraic circuits. There has 
been recent interest in using compositional paradigms to system-
atically study the generalization capabilities of machine learning 

Table 1 | Key circuit properties and their descriptions

Circuit property Description

Circuit C A directed acyclic graph that computes a polynomial.

Size s The number of edges in C.

Depth d The longest path from an input gate to an output gate.

deg(v) The degree of a gate v. If v is the output gate, deg(v) is the 
degree of the polynomial.

Gate v𝔽𝔽 An element of a field 𝔽𝔽 with deg(v𝔽𝔽) = 0, and fan-in 0.

Gate vX A variable xi ∈ X with deg(vX) = 1, and fan-in 0.

Gate v+ A sum gate with deg(v+) = max(deg(u), deg(v)) for inputs u 
and v, and fan-in 2.

Gate v× A product gate with deg(v×) = deg(u) + deg(v) for inputs u 
and v, and fan-in 2.

http://www.nature.com/natmachintell
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models8,9,12,24,46,49–54. Here we demonstrate direct links to common forms 
of compositional generalization using algebraic circuits.

Systematic compositional generalization and regression. Systematic 
compositional generalization refers to the ability to recombine known 
basis elements into novel combinations of fixed sequence size (Fig. 4a). 
This means that test sets of systematicity are limited to novel combina-
tions of the same length as seen during training8,9. The analogue in 
algebraic circuits is (1) to sample a family of circuits 𝒞𝒞 over a field 𝔽𝔽 of 
a fixed size and depth, and (2) to generalize to circuits of the same size 
and depth, but differentially sampling input gates and/or operators. 
This can be implemented by choosing different samplers—P1 and P2—
that differentially sample gates (Fig. 4a). For example, the training set 
of circuits could be constructed with input gates ai∈P1𝔽𝔽, and the testing 
set of circuits could be constructed with input gates bi∈P2𝔽𝔽. (Note that 
when samplers preferentially choose bi ≫ ai, this is analogous to the 
common test of length generalization; Fig. 2a.)

In real-world data, the distributional properties of the training 
distribution can often bias AI (or even human) learners towards learning 
memorized short cuts, rather than learning algorithmic or syntactic 
strategies that enable robust generalization7. However, given its infi-
nite vocabulary and the ability to sample circuits with well-defined 
algorithmic properties, algebraic circuit complexity provides a com-
prehensive experimental sandbox for designing and sampling from 
diverse data distributions. Through this sandbox, practitioners can 
identify specific properties of train–test distributions that can either 
introduce a distributional bias or confound to be assessed, or amelio-
rate these biases by counterbalancing the distribution. Interestingly, 
we note that successful systematic compositional generalization on 
input gates sampled from different distributions amounts to learning 
a distributionally robust regression model (for example, Zhang et al.55 
and Ghosh et al.56). This is because a circuit of specific size and depth 
(for example, as shown in Fig. 4a) expresses a specific polynomial. 
Generalization over a fixed circuit with a distribution shift of its input 
gates (for example, field elements but not operator gates) would dem-
onstrate successful out-of-distribution generalization.

Previous notions of systematic compositional generalization 
have specified ‘weak’ and ‘strong’ forms of systematicity57. Strong 
systematicity refers to the ability to generalize to tokens (for exam-
ple, operands) in novel syntactic positions. (For example, if a model 
is exclusively trained on expressions of the form a + b and a + c where 
a is always the first token, a model that generalizes to b + a where a 
is the last token would exhibit strong systematic generalization.) 
Weak systematicity refers to the ability to exclusively generalize to 
novel expressions in which a is always in the same syntactic position  

(for example, always the first token). While this distinction does not 
alter the semantics for commutative algebras (as discussed in this 
paper), this distinction is important for many formal languages in 
which permuting syntactic ordering produces novel semantics, such 
as in many context-free grammars and non-commutative algebras.  
(In these cases, circuits can be encoded as ordered directed acyclic 
graphs, in which the order of parent/input gates is preserved.)

Productive compositional generalization. Productive compositional 
generalization refers to the ability to generalize to sequences of longer 
length. In the context of algebraic circuits, while systematicity focuses 
on keeping circuit size and depth fixed while manipulating gates, pro-
ductive generalization focuses on manipulating circuit size and depth 
(Fig. 4b). Thus, evaluating systematic and productive generalization 
can be studied together; measures of generalization can be quantified 
in a continuous manner by varying circuit parameters, such as gate 
samplers (systematicity), size (productivity) and depth (productivity). 
Understanding how each of these properties interact across training 
and testing sets will provide a comprehensive quantification of gener-
alization over distinct algorithmic properties.

As algebraic circuits are circuit representations of algebraic 
expressions, one can ask more generic questions about algebraic poly-
nomials. For example: given a class of polynomials as a training dataset, 
what other class of polynomials will this model be able to compute? 
Such a question goes beyond asking whether a model can systemati-
cally or productively generalize. Instead, it addresses a basic question 
that can leverage other rich mathematical subfields (for example, 
geometry, topology) to quantify algorithmic generalization. Algebraic 
circuits provide a flexible framework to formalize problem complexity 
beyond existing paradigms in compositional generalization.

Classification tasks: polynomial identity testing. Previous work 
studying arithmetic abilities in transformer models has typically 
focused on computing simple expressions with field elements  
(a ∈ 𝔽𝔽; for example, 5 + 7 = ?), rather than abstract variables (x ∈ X; for 
example, 2x1 + x2 + 7). Including variables in an algebraic expression 
increases the polynomial degree (d ≥ 1), thereby increasing its complex-
ity and the need for abstractions. One approach to evaluating algebraic 
circuits with variables is through polynomial identity testing, an active 
area of research in computational complexity theory and computa-
tional algebra. Polynomial identity testing evaluates whether two 
polynomials are equivalent (that is, P1(x1, …, xn) ≡ P2(x1, …, xn)). Posed 
another way, one can ask whether P1(x1, …, xn) − P2(x1, …, xn) ≡ 0.

This problem can be naturally formulated as a binary classifica-
tion task for AI models. Importantly, studying the extent of algebraic 
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Fig. 2 | Commonly used AI evaluations for length generalization with 
arithmetic tasks. a,The predominant form of ‘length generalization’ in 
transformers is evaluating performance on addition or multiplication 
problems with larger integers than seen during training19–21,23,26,39. This would 
be conceptually equivalent to a situation in which the circuit size and depth 
are fixed, but the sampling of input gates (that is, field elements) differs across 
training and testing sets. (However, see discussion in ‘Open theoretical and 

empirical challenges’ on the nuances of computing long addition.) The notion of 
length generalization is specific to the context of transformers, given that larger 
digits require a larger context window. b, Another form of length generalization 
studied in the literature is to generalize to arithmetic problems with more 
operands (variables) than seen in the training set36. From a circuit complexity 
perspective, these two approaches are distinct problems.
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generalization by assessing train–test circuit divergences of polyno-
mial identity problems can be rigorously quantified, as each identity 
problem can be encoded as a circuit (Fig. 5a). The complexity of a poly-
nomial identity testing problem can be scaled up by increasing the size, 
depth and/or degree of the test problems. Moreover, machine learning 
practitioners can leverage existing symbolic programs and solvers to 
systematically generate large datasets (for example, SymPy; Meurer 
et al.58). Polynomial identity testing thus provides a unique opportunity 
to study AI generalization in terms of circuit complexity theory.

Sequence-to-sequence tasks: polynomial expansion or factori
zation. A wide application of generative models is in sequence-to- 
sequence transduction tasks. One particularly impactful use case is 
the development of AI models for code. AI models for code take in 
code as inputs (for example, the programming language COBOL), 
and generate a translation of that code (for example, Java). Despite its 
potential importance for modernizing many existing codebases, there 
is substantial scepticism as to whether generative models trained with 

next-token prediction can reliably generate accurate code translations. 
This is due to the fact that programming languages are not dictated by 
autoregressive processes, and instead governed by algorithmic rules.

Learning on algebraic circuits provides a straightforward frame-
work to evaluate the ability of models to learn sequence-to-sequence 
tasks that are governed by algorithmic rules. For example, the problem 
of expanding or factorizing a polynomial is a problem that is governed 
by the axiomatic rules of algebra (Fig. 5b). Like code translation, this 
task requires transforming one sequence into another while maintain-
ing mathematical equivalence (or for code, semantic equivalence 
despite syntactic differences). Importantly, there are explicit tools to 
describe the complexity with which the translation occurs in algebraic 
circuits. For example, a polynomial expansion transforms a factorized 
representation (that is, shallow circuit) to a sum of monomials repre-
sentation (that is, deeper circuit). In contrast, a polynomial factoriza-
tion implements the inverse operation, which requires compressing a 
large circuit to a smaller circuit. While a general interesting question is 
to ask whether models trained on one type of transformation can learn 
the other, this formalization has natural implications for understanding 
how to design AI models for code. In particular, some programming 
languages may have lower-level syntax (for example, COBOL) relative to 
other languages, such as Python or Java. In either case, understanding 
how lower-level and higher-level encodings of an expression (be they 
algebraic or programmatic) requires learning useful abstractions and 
the algorithms to translate them. Thus, studying the conditions by 
which AI models can robustly parse and translate algebraic circuits 
can shed light on the best strategies to train AI models to translate 
programming languages.

Mechanistic interpretability with algebraic circuits
A major issue in assessing algorithmic generalization is the difficulty of 
interpreting what goes awry when they fail to generalize. This is partly 
due to the lack of interpretability of many benchmarks, which are often 
presented in natural language, and for which verifiable algorithms 
(for example, circuit diagrams or parse trees) do not exist14,59. A more 
recent set of approaches in characterizing the interpretability of neural 
network representations rely on the design of carefully constructed 
tasks that have interpretable tasks, such as ground-truth parse trees 
or circuit diagrams24,36,60. Algebraic circuits similarly provide verifiable 
tasks and subtasks. While the input to an AI model might be a string 
representation of a polynomial, that polynomial’s circuit encoding 
provides its ground-truth encoding. Such an encoding makes it easy to 
directly compare to the internal representations of a model, such as the 
attention weights within a transformer (Fig. 6). This makes it possible 
to track if the internal representations of a transformer computes the 
algebraic expression similarly to the algorithm encoded by its circuit—
the normative algorithm to computing polynomials. More broadly, 
the distance metric that computes the distance between attention 
weights and ground-truth circuit edges (as shown in Fig. 6) can be used 
as a regularization term to encourage transformers to learn normative 
circuit computations, providing algorithmic and step-by-step informa-
tion to the model. Overall, evaluating AI models on algebraic problems 
allows practitioners to adjudicate between theoretical models of circuit 
computation with modern AI computation.

Evaluating LLMs with algebraic circuits
We have introduced algebraic circuit tasks within the context of train-
ing models from scratch. While it is difficult to evaluate pretrained 
LLMs with precise levels of certainty due to the obscure nature of the 
pretraining data and optimization protocols, algebraic tasks can still 
be repurposed for LLMs. Previous work has demonstrated that LLMs 
typically fail on mathematical problems, which require abstract reason-
ing on variables7,25,61. Thus, if an LLM calls specific tools (for example, 
calculators) that make computing circuits with only field elements 
too simple (for example, those illustrated in Figs. 1 and 2), we can 

BOX 1

A formal sketch of algorithmic 
generalization
Let B be a basis set of elements. Let U1 = B and Ui+1 = {u∣(u1, u2 ∈ U≤i) 
and (u = u1 ∘ u2)}, where ∘ stands for any computable composition 
operator on Ui (akin to production rules in context-free grammars or 
operations in a field). Then, we define some universe set

U =⋃i∈ℕ
Ui

We define a function (task) T on U such that T: U → R (see below for 
tasks T for algebraic circuits). T is a compositional function, where 
∀u1, u2 ∈ U, T(u1 ∘ u2) = T(u1)*T(u2), where * stands for any computable 
composition on R.

Let Dtrain and Dtest be distributions over U, and supp(Dtrain∣B) and 
supp(Dtest∣B) to be the support of the basis set elements in Dtrain 
and Dtest, respectively. We restrict Dtest to be a distribution in which 
supp(Dtest∣B) ⊆ supp(Dtrain∣B). In addition, if a composable function ∘ 
is represented in Dtest (that is, u ∈ Dtest and u = b1 ∘ b2), then we require 
that ∘ is also represented in Dtrain. We include these as requirements 
for algorithmic generalization; it would be challenging, if not 
impossible, to generalize to samples in Dtest if not all basis elements 
and composition operators were provided in Dtrain.

We define algorithmic generalization as the evaluation of a 
learned model M (for example, a neural network) where

Prx∼Dtest [M(x) = T(x)] > 1 − ϵ (1)

Here, M is only optimized from samples x ~ Dtrain, and ϵ is the 
evaluation error of M on x ~ Dtest. A strong form of algorithmic 
generalization over algebraic circuits would be to satisfy 
equation (1) for all valid partitions of Dtrain and Dtest (with the 
requisite support of basis sets and composition functions) in U for 
uniformly small values of ϵ.

For algebraic circuit problems, T: U → R can be a function that 
maps a circuit to: (1) a field element, for example, r ∈ ℝ (in the 
case of circuit evaluation; Fig. 1); (2) {0, 1}, in the case of a 
classification task, such as polynomial identity testing (Fig. 3a);  
(3) another circuit C (that is, in the case of polynomial expansion 
or factorization; Fig. 3b).
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replace these with circuits containing variables x ∈ X (that is, those of  
degree ≥1). For example, such tasks can include the aforementioned 
polynomial identity testing or polynomial expansion and factorization 
tasks, both of which can be made arbitrarily difficult and use arbitrary 
sets of variables and tokens.

Given that previous studies have demonstrated poor abstract 
reasoning abilities of LLMs, it is unlikely that current LLMs will be able 
to compute arbitrary circuits out-of-the-box. However, recent tech-
niques in prompting LLMs have suggested the ability of LLMs to learn 
from a few prompts (termed in-context learning)37,62–67. In other words, 
a few question–answer pairs can be shown to the LLM in the context 
window, followed by the target problem. This approach naturally offers 
an approach to measure algorithmic generalization across circuit 
divergence metrics: given a class of question–answer pairs gener-
ated from a specific circuit class, how well can a model generalize to a 
problem generated from a different complexity class (Fig. 7)? Another 
approach to systematically evaluate the ability of LLMs to compute 
circuits is through chain-of-thought prompting. Recent theoretical 
studies have indicated that leveraging chain-of-thought enables LLMs 
to solve more challenging problems by enhancing their expressivity 
and using scratchpads48,68–70. Practically, inducing chain-of-thought 
in LLMs provides a way to verify whether LLMs sequentially ‘reason’ 
through steps that are analogous to ground-truth circuit computa-
tions (that is, following the edges from input gates). Moreover, as 
algebraic circuits encode an explicit algorithm to compute an expres-
sion, each step through the circuit produces a verifiable intermediate 
computation. This enables the evaluation of LLMs not only on verified 
outputs but also on verified intermediate reasoning chains, providing 
an opportunity to evaluate reinforcement learning approaches that 

have been increasingly used to develop reasoning-based models4,71 
Together, these experimental approaches provide concrete methods 
from which to quantify algorithmic ability in LLMs.

Open theoretical and empirical challenges
Circuits provide a useful formalism to study algorithmic generaliza-
tion in AI systems. They are also a leading approach to quantifying 
the computational complexity of algorithmic problems in theoretical 
computer science. Previous AI reasoning literature has focused on 
benchmarking AI to human-level reasoning72–75, or on how humans 
learn algorithmic tasks49,76,77, both of which are important areas of inves-
tigation from the perspectives of cognitive science and AI. However, 
this Perspective provides a complementary viewpoint from theoretical 
computer science aimed to quantify reasoning based on generalizing 
over algorithmic complexity. Here we highlight the primary challenges 
associated with linking formal circuit models of computation with AI 
generalization.

Circuit complexity and AI generalization
Algebraic circuit complexity studies the algorithmic resources required 
to evaluate polynomials. Although there are other metrics of com-
plexity, such as Kolmogorov complexity in algorithmic information 
theory78,79, this measure of complexity is incomputable, as it requires 
searching over an infinite number of programs (although there are 
efforts in approximating Kolmogorov complexity with alternative 
methods; Wyeth and Sturtivant45, Johnston et al.80 and Dingle et al.81). 
Thus, while circuits allow for the explicit computation of a problem, 
it remains unclear as to whether notions from circuit complexity will 
naturally map onto notions of AI generalization.
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Fig. 3 | Algorithmic capabilities of modern AI systems and architectures  
can be studied with algebraic circuits. a, A set of problems can be identified  
(and sampled) from algebraic circuits. b, Given a family of circuits, we can 
identify circuit divergences—the divergence of different circuit properties, such 
as size and depth—to design train and test datasets to evaluate the algorithmic 
generalization capabilities of a model. IID, independent and identically 

distributed. c,d, We can evaluate a model (or set of models) across these circuit 
splits (d) and quantify their performance according to circuit divergences (c). 
This AI evaluation lifecycle allows us to iterate and refine hypotheses regarding 
the degree to which a model can generalize to a class of algorithms. Note that 
circuit divergences can be measured beyond depth and size.
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Fig. 4 | Analogues of common compositional generalization benchmarks in 
terms of algebraic circuits. a, A simpler form of generalization within an 
algebraic circuit is generalizing to circuits of the same structure (size and depth), 
but with a novel combination of gates. The analogue of this in compositionality is 
commonly referred to as systematic compositional generalization9. (Learning 
over circuits of fixed structure can also be viewed as learning a regression 
model55.) On the left, we illustrate an example of a model that is trained on a 
restricted family of circuits where the input gates are sampled from a field 𝔽𝔽 with 
a sampling function P1. At test time, the model is required to generalize to circuits 
of the same circuit class (in terms of size and depth), but where the input gates are 

sampled using a different sampler P2. On the right, both input and operator gates 
are chosen with separate samplers across train and test circuits, resulting in a 
more difficult test of systematic compositionality. b, Productive compositional 
generalization considers partitions of the training and testing sets across circuit 
sizes and depths. The analogue of this in compositionality is commonly referred 
to as productive compositional generalization. Given a family of circuits 𝒞𝒞𝔽𝔽𝔽X,D,S, 
where D and S denote a set of depths di and size si, the primary experimental 
manipulation is to construct a training set 𝒞𝒞𝔽𝔽𝔽X,D1 ,S1 and testing set 𝒞𝒞𝔽𝔽𝔽X,D2 ,S2 such 
that there exists no overlap of a specific circuit class C𝔽𝔽𝔽X,di ,si  between the training 
and testing sets.
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Fig. 5 | Algebraic problems as machine learning challenges. Previous work that 
leverages arithmetic problems for machine learning studies is typically limited 
to evaluating expressions with field elements. We introduce problems that can 
be evaluated with abstract variables. a, Polynomial identity testing as a machine 
learning classification task. Polynomial identity testing, an important and active 
area of research in computational algebra, evaluates whether two polynomials 
are equivalent. We illustrate two different polynomial expressions, P1(x) and 
P2(x) with distinct circuit representations, yet are mathematically equivalent. To 
reformulate this as a classification task for machine learning studies, one can ask 
whether P2(x) − P1(x) ≡ 0 (right). b, Polynomial expansion and/or factorization 

as a transduction (sequence to sequence) task. Common sequence-to-sequence 
tasks in linguistics ask whether a model can expand a string using a set of rules or 
a grammar, such as the AI benchmark tasks SCAN or PCFG8,9. In algebraic circuits, 
this is analogous to expanding a polynomial in a factorized representation (left). 
Given the one-to-one correspondence of polynomials, an additional approach is 
to take a polynomial in its expanded form (sum of monomials), and generate the 
factorized representation (right). This provides the ability to evaluate whether 
an AI system can expand an encoding (expansion) or compress an encoding 
(factorization).
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Other studies have investigated the theoretical require-
ments for transformer models to evaluate formal languages and 
algorithms48,69,82–84. While these studies provide useful insight into 
what architectural components are likely important to implement 
algorithmic problems of a particular complexity (for example, deeper 
networks for circuit depth and wider context windows for circuit size), 
these studies do not address the learnability of circuit algorithms. 
Furthermore, it will be interesting to understand how frameworks 
grounded in algorithmic circuit complexity (as presented here) relate 
to other measures of compositionality, which are often measured by 
properties of the computation graph of a task24, divergence of input–
output mapping of a task46, or divergence of a distribution of training 
and testing tasks (for example, MCD)17.

Nevertheless, given the lack of any framework to measure algo-
rithmic complexity in AI, we believe that introducing a circuit com-
plexity framework from which to design quantitative benchmarks 
will be an important step towards building a science of algorithmic 
generalization. Furthermore, an algebraic circuit approach offers 
extensive machinery to enable generalization through other algebraic 
tools, such as minimum spanning/basis sets, their decompositions 
and more.

Faithful algorithmic representation learning
Although an algebraic circuit encodes an explicit algorithm to compute 
a polynomial at a particular level of abstraction (that is, follow the edges 
from the input gates), it is possible that there are alternative viable 
algorithms to compute that same polynomial. For example, would an 
AI model simply follow the edges from the input gates to the output 
gates? Or might it factorize the expression (leading to a shallower cir-
cuit) before evaluating that expression? Relatedly, the algorithmic steps 

required to implement long addition (particularly when computing the 
sum of two very large numbers) are not fully captured in the algebraic 
circuits we present in this Perspective. (For example, long addition as 
specified in Dziri et al.24 requires additional operators such as ‘carry’, 
‘concatenate’, ‘modulo’ and so on.) Would AI models implement long 
addition with a different set of computational gates and operators to 
accommodate arithmetic with large numbers? Nevertheless, despite 
these potential ambiguities, using a computational circuit framework 
provides testable and verifiable hypotheses that allow us to empirically 
evaluate what algorithm a model implements. Furthermore, use of a 
circuit framework enables the design of quantitatively meaningful 
algorithmic benchmarks such as those designed to test generalization 
over algorithmic time complexity (circuit depth) or space complexity 
(circuit size), among others. More broadly, a computational circuit 
framework can naturally extend beyond algebraic circuits to formal 
languages, such as those within the Chomsky hierarchy47 (for example, 
context-free grammars), by characterizing the circuit parameters of the 
language’s parse tree. Thus, this framework provides a unified theoreti-
cal foundation for quantifying algorithmic complexity across diverse 
empirical evaluations, including arithmetic tasks, formal languages 
and other compositional paradigms, and is an important step towards 
understanding the faithfulness by which an AI system computes a class 
of algorithms.

Alternatively, many previous approaches to faithfully learning 
algorithmic representations often involve neurosymbolic methods. 
These methods provide promising avenues to learn discrete algorith-
mic solutions to problems that are reliable and sample efficient53,85–88. 
However, designing general purpose (rather than domain specific) 
neurosymbolic models can be challenging, as they are often not fully 
differentiable or require strong inductive biases. By contrast, although 
statistical machine learning models (for example, transformers) are 
‘general purpose’, the learning process is often obfuscated by learn-
ing dynamics that depend on architecture and complex optimization 
protocols. This makes it difficult to ascertain what algorithms statistical 
systems learn. However, recent studies in compositional representation 
learning have suggested that different factors—such as choice of ini-
tialization and/or training curriculum—can have a strong influence on 
whether a model learns compositionally49,89–92. In addition, developing 
techniques from the field of mechanistic interpretability provides new 
avenues from which to inspect whether the learned representations 
in an AI model are faithful to the hypothesized underlying algorithm 
(for example, Fig. 6; Olsson et al.64 and Friedman et al.93). Nevertheless, 
leveraging diverse methods to carefully investigate the algorithms 
that symbolic and statistical AI models learn will be important for 
their interpretability, reliability and overall safety to ensure reliable 
deployment of AI systems.
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comparison to interpret transformer attention representations. Left: the 
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representations of its input tokens. When the input is an algebraic expression 
(presented as a string of tokens), the attention matrix can be investigated to 
uncover the relationships between tokens (that is, operators and operands). 
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encoding, which can be represented as the adjacency matrix of that circuit. 
Middle: this allows for the direct comparison between attention weights (that is, 
the dot product between the query (Q) and transposed key (K) matrix) and the 
ground-truth circuit representation. This distance between the transformer’s 
attention weights and the ground-truth circuit adjacency matrix can also be used 
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Fig. 7 | The algebraic generalization capability across circuit divergence 
metrics can be evaluated through few-shot prompting in LLMs. Given a set of 
question (left) and answer (right, Ai) pairs sampled from a specific circuit class 
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Conclusion
Quantifying the algorithmic ability of AI systems is difficult owing 
to the lack of a theoretical framework from which to establish mean-
ingful benchmarks. While there has been an increasing number of 
studies that have employed algebraic and compositional tasks to reli-
ably elicit failure modes of transformers and LLMs, no theoretical 
framework exists to interpret these findings. In this Perspective, we 
provide a parsimonious framework—algebraic circuit complexity—to 
evaluate the extent of a model’s algorithmic generalization ability in 
terms of their circuit divergences. In contrast to other formulations 
of complexity, such as Kolmogorov complexity, encoding algorithmic 
problems as circuits provides an explicitly computable formulation. 
The rich expressivity of algebraic problems, the data-rich nature of 
producing algebraic datasets and the close links with algebraic circuits 
to other mathematical fields, makes algebraic circuit complexity a 
fruitful approach to quantify algorithmic generalization in AI systems.  
More generally, the circuit complexity framework introduced here 
(with algebraic functions) can be naturally extended to other compu-
tational problems (for example, formal languages, Boolean circuits). 
We hope this Perspective provides the theoretical groundwork for 
future studies to quantify algorithmic generalization in modern AI 
systems with circuits.
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