
Nature Machine Intelligence | Volume 7 | August 2025 | 1195–1205 1195

nature machine intelligence

https://doi.org/10.1038/s42256-025-01092-wPerspective

Quantifying artificial intelligence through
algorithmic generalization

Takuya Ito      , Murray Campbell    , Lior Horesh    , Tim Klinger &
Parikshit Ram    

The rapid development of artificial intelligence (AI) systems has created
an urgent need for their scientific quantification. While their fluency
across a variety of domains is impressive, AI systems fall short on tests
requiring algorithmic reasoning—a glaring limitation, given the necessity
for interpretable and reliable technology. Despite a surge in reasoning
benchmarks emerging from the academic community, no theoretical
framework exists to quantify algorithmic reasoning in AI systems. Here
we adopt a framework from computational complexity theory to quantify
algorithmic generalization using algebraic expressions: algebraic circuit
complexity. Algebraic circuit complexity theory—the study of algebraic
expressions as circuit models—is a natural framework for studying the
complexity of algorithmic computation. Algebraic circuit complexity
enables the study of generalization by defining benchmarks in terms of the
computational requirements for solving a problem. Moreover, algebraic
circuits are generic mathematical objects; an arbitrarily large number
of samples can be generated for a specified circuit, making it an ideal
experimental sandbox for the data-hungry models that are used today.
In this Perspective, we adopt tools from algebraic circuit complexity, apply
them to formalize a science of algorithmic generalization, and address key
challenges for its successful application to AI science.

The recent evolution of modern artificial intelligence (AI) systems and
large language models (LLMs) has led to the speculation that these
systems may reason1–4. However, owing to challenge of evaluating
large models trained on massive pretraining datasets5, it is difficult to
evaluate whether such models are truly exhibiting algorithmic reason-
ing abilities, or whether they instead regurgitate plausible text from
their pretraining data6,7. This ambiguity has led to a deluge of reason-
ing benchmarks8–17. Despite these efforts, objectively quantifying the
complexity of reasoning problems is difficult; most of these experi-
ments are ad hoc, and designed without a framework to quantify and
verify the algorithmic complexity of reasoning problems. However,
approaches in computational complexity theory, a field within theo-
retical computer science, have made it possible to explicitly measure
a problem’s algorithmic difficulty, paving the way for generalization

tests rooted in quantifiable measures of complexity. In this Perspec-
tive, we bridge algorithmic reasoning with a decades-old branch of
computational complexity—circuit complexity theory—to provide a
theoretical link to studying the complexity of algorithmic computa-
tion in modern AI systems.

Recently, there has been increased interest in studying modern
AI models through arithmetic and compositional tasks9,12,18–27. Com-
positional tasks are problems rooted in a long history from the early
twentieth century28,29 that are generated by recombining a basis set of
atomic elements to form a variety of task combinations (for a review,
see Russin et al.30). (Arithmetic problems are compositional; they are
composed of atomic elements (numbers and operators), and can
be recomposed to generate novel expressions and problems.) For
modern AI systems, compositional tasks can serve as useful reasoning

Received: 3 October 2024

Accepted: 18 June 2025

Published online: 18 August 2025

 Check for updates

Mathematics and Theoretical Computer Science Department, T.J. Watson Research Center, IBM Research, Yorktown Heights, NY, USA.
 e-mail: taku.ito1@gmail.com

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-025-01092-w
http://orcid.org/0000-0002-2060-4608
http://orcid.org/0000-0001-8158-894X
http://orcid.org/0000-0001-6350-0238
http://orcid.org/0000-0002-9456-029X
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-025-01092-w&domain=pdf
mailto:taku.ito1@gmail.com

Nature Machine Intelligence | Volume 7 | August 2025 | 1195–1205 1196

Perspective https://doi.org/10.1038/s42256-025-01092-w

complexity as a gateway into studying algorithmic generalization
more broadly. We introduce the core components of algebraic circuits,
address how they can be leveraged to study algorithmic generalization,
and discuss several key open theoretical and empirical challenges.

Algebraic circuits
Algebraic circuit complexity studies algebraic expressions as comput-
able circuit models. There has been a substantial amount of recent
machine learning research studying arithmetic generalization, a key
algorithmic ability. While important and insightful, most of those stud-
ies primarily focus on a restricted set of algebraic problems, which we
will illustrate later18,19,21,24,39. Below, we provide definitions of algebraic
circuits that will place previous work within a broader mathematical
framework. Our goal is to provide the tools to quantify model gener-
alization through circuit complexity, rather than ad hoc goals such as
length generalization.

Definition
(For a more formal definition, see Shpilka and Yehudayoff42 or Bürgis-
ser et al.43.) An algebraic circuit C represents a polynomial expression
as a directed acyclic graph, composed of gates v and edges e. Input
gates, vX and v𝔽𝔽, are defined as either variables (for example,
X = {x1, …, xn}) or elements in a field 𝔽𝔽 (for example, ℝ), respectively.
Input gates have a fan-in (in-degree) of 0. All other gates are operators:
a sum gate (v+) or a product gate (v×). In this Perspective, we restrict
the fan-in of operator gates to 2, as is standard42. For our purposes, this
ensures that there is the same number of gates in a circuit model with
its corresponding representation as a string of tokens, which simplifies
downstream analyses (for example, the analysis in Fig. 6). Operator
gates have a fan-out (out-degree) of either 1 or 0. If the fan-out of an
operator gate is 0, then it is the output gate of that polynomial.

Properties
An algebraic circuit C has two main algorithmic complexity measures:
size s and depth d (see Table 1 for a summary of all properties). The size
s of a circuit refers to the number of edges e in C, and corresponds to
algorithmic space complexity. The depth d of a circuit refers to the
longest path from an input gate to the output gate, and corresponds
to algorithmic time complexity. We can denote a subcircuit Cv of C,
which computes the polynomial fv rooted at gate v. Another important
property of an algebraic circuit is its degree (that is, the degree of a
polynomial). The degree of a circuit (or a subcircuit) can be computed
by measuring the degree of the gate v, denoted deg(v). Elements in a
field 𝔽𝔽 are of degree 0, input variables x ∈ X have degree 1, the degree
of an sum gate (+) is determined by the degrees of its inputs u, v such
that deg(u + v) = max(deg(u), deg(v)), and the degree of a product gate
(×) is determined by deg(u × v) = deg(u) + deg(v).

benchmarks as they require (1) abstraction, (2) logical and verifiable
application of rules or axioms, and (3) precise problem-solving and
rigour. Critically, these paradigms have provided reliable ways to elicit
failure modes in transformer-based AI models for specific forms of
compositional generalization. For example, a number of studies have
demonstrated the difficulty of ‘length generalization’—generalizing
to problems of longer length than seen during training19,21,26,31. Other
researchers have also introduced various notions (for example, sys-
tematicity and productivity) in an effort to taxonomize different forms
of compositionality9,32–35. By contrast, the formalisms from circuit com-
plexity theory provide a set of tools that can be applied to quantify algo-
rithmic generalization—generalization over algorithms specified by
circuits and their associated measures of complexity, such as space or
time complexity. (Structural properties of circuits correspond directly
to algorithmic requirements to compute that problem.) Moreover, for-
malizing problems through a circuit complexity framework provides
a theoretically grounded framework for the increasingly popular yet
nascent empirical evaluations in AI systems that use arithmetic and
compositional tasks18,19,21–24,36–41. Although we focus on formalizing
algebraic problems through the lens of circuit complexity (that is,
algebraic circuit complexity) due to the widespread use of arithmetic
problems to evaluate modern AI systems, the more general framework
of circuits can be similarly extended to other algorithmic problems.

A large class of algorithmic problems can be studied with algebraic
expressions42,43. Algebraic circuit complexity theory formalizes the
evaluation of algebraic expressions through algorithms encoded as
computable circuits (that is, directed acyclic graphs; Fig. 1). This for-
malization is well established in computational complexity theory, the
branch of theoretical computer science concerned with quantifying
the difficulty of computational algorithms and the resources required
to solve them44. Importantly, formalizing computational problems in
terms of circuits is the leading approach to empirically quantify their
complexity. Unlike other notions of complexity, such as Kolmogorov
complexity in algorithmic information theory (which is incomputable),
notions developed in complexity theory for circuits are explicitly
computable and determined by their shape and structure45. Thus, the
tools of circuit complexity can formalize notions of generalization over
algorithms by defining benchmarks in terms of their circuit properties.
Furthermore, algebraic circuits are generic mathematical objects;
they can be represented from a variety of mathematical perspectives
(geometry, topology and so on), providing useful interpretations in
other domains. Algebraic circuits are therefore well situated to inves-
tigate algorithmic generalization—the problems are computable and
verifiable, large datasets can be straightforwardly generated from
circuit specifications, and new models can be developed that address
specific failure modes within this framework. In the ensuing sections,
we provide a blueprint for the successful adoption of algebraic circuit

+
+ ×

+ + × ×
+

+

× × ×

+
+

×

a b c d e

+

5 + 7

Depth 1
Size 2
Order 0

x1 + x2 + x3

Depth 2
Size 4
Order 1

(x1 + 1) (x1 + 1)

Depth 2
Size 6
Order 2

x1
2 + 2x1 + 1

Depth 3
Size 8
Order 2

2x1 x2
2 + x2

2 + x1

Depth 4
Size 12
Order 3

2 x1 x1x2 x2 x2 x2
21 11 x1 x1 x1x1x175 x1 x2 x3

Fig. 1 | Examples of algebraic expressions represented as circuits.
a, A two-operand addition circuit (input gates are sampled from a field 𝔽𝔽).
b, A three-operand addition circuit (input gates are sampled from the set of
variables xi ∈ X rather than 𝔽𝔽). c,d, A mathematically equivalent pair of circuits,

but represented as a factorized expression (c) and its a monomial expansion (d).
Notably, despite their mathematical equivalence, the circuit representations are
distinct. e, A polynomial of depth 4 and size 12.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | August 2025 | 1195–1205 1197

Perspective https://doi.org/10.1038/s42256-025-01092-w

Figure 1 provides a few simple examples of algebraic circuits.
A circuit representation of an algebraic expression provides a concrete
algorithm for computing a polynomial, with some circuits requiring
more computation than others (for example, determined by size or
depth). Furthermore, a circuit description can provide explicit differ-
ences in required computation for polynomials that are mathemati-
cally equivalent (for example, Fig. 1c,d). Such a formalization can be
useful to study how different representations of equivalent algebraic
expressions can lead to different levels of generalization, or how syn-
tax relates to semantics in formal languages. The recent studies in
arithmetic generalization in AI models focus on the simplest circuit
representations of algebraic problems (problems analogous to Fig. 1a,
but varying the magnitude of the field elements, for example, train
on small digit numbers, test on large digit numbers). The language of
circuit complexity can provide more interesting and flexible ways to
investigate generalization across circuit complexity classes.

Towards a science of generalization with
algebraic circuits
A recent study concluded that the behaviour of LLMs is a function of
the problems they are trained to solve25. It is difficult to identify what
the ‘problems’ are when the pretraining corpus is natural language
text derived from the internet. A theoretically coherent alternative
to quantify AI systems is to select problems for which (1) complexity
is quantifiable and (2) arbitrarily large datasets can be systematically
generated. Algebraic circuits satisfy both of these constraints.

Although recent papers have demonstrated an increased inter-
est in using arithmetic tasks to quantify generalization, preliminary
approaches have been theoretically limited. As alluded to above,
many of the recent papers evaluating length generalization in arith-
metic tasks train on two-variable addition (or multiplication), and
test on the same circuit class but sample field elements that are larger
in magnitude19–21,23,26,39,41 (Fig. 2a). Others focus on a more complex
form of generalization, that is, addition or multiplication on problems
with a greater number of variables, which is equivalent to increasing
the circuit size and depth (Fig. 2b; for example, a modular arithmetic
task36). While useful and informative, both these tests of generalization
scratch the surface of generalization metrics that can be devised with
algebraic circuits.

The importance of learning composable functions
We first define algorithmic generalization (Box 1), and consider the
importance of learning algorithmically. The ability to generalize algo-
rithmically is one of the most challenging problems in AI, and is a
requirement for robust reasoning and planning. Like algebraic circuits,
several previous papers formulated algorithmic tasks as computing a
path through a directed graph or circuit11,13,24,46. Importantly, learning
an algorithmic task requires (1) decomposing and abstracting the

individual functions (for example, gates) of a circuit, and (2) under-
standing how they can be recomposed via edges to produce novel
circuits (for example, function composition). Algebra is a natural lan-
guage to study algorithmic generalization as it can be encoded as a
circuit, and requires both abstraction and function composition.
Moreover, in contrast to other compositional approaches (for example,
regular or context-free grammars36,47), algebraic problems encompass
an infinite vocabulary (for example, ℝ) with an expressive grammar
determined by its axioms, making it well suited for machine learning
algorithms that require many training samples. In the following section,
we propose an algorithmic generalization framework in terms of alge-
braic circuits.

Circuit divergence as a metric of generalization
The language of algebraic circuits provides quantitative metrics to
formalize generalization in terms of algorithmic complexity, as circuit
structure directly corresponds to algorithmic properties. In particu-
lar, generalization of AI systems can be quantified in terms of circuit
divergence—the divergence of circuit parameters between algebraic
circuits employed during training and testing (Fig. 3). This emphasis on
characterizing the algorithmic properties of problems complements
previous work focused on establishing metrics of compositionality
based on the degree of subgraph overlap in training and testing sets.
One particularly relevant metric is maximum compound divergence
(MCD) introduced by Keysers et al.17, which measures the divergence
of the frequency distribution of compositional subgraphs between
the training and testing sets. While Keysers et al.17 demonstrated the
empirical relevance of MCD on generalization performance, here we
emphasize the importance of designing training and testing partitions
according to the distribution of algorithmic complexity (that is, circuit)
properties. This contrasts with MCD, which focused on providing a
single summary statistic that, although empirically useful, does not
distinguish between algorithmic properties. Specifically, designing
benchmarks by manipulating circuit size (versus depth) enables the
characterization of generalization over algorithmic size (versus time)
complexity. This in turn can help practitioners isolate how specific
architectural components of models map onto algorithmic capabilities:
for example, circuit depth of a problem typically relates to the number
of layers of a transformer, while circuit size relates to the degree of
parallelization, such as context length size for transformers48.

Given a model M, we seek to characterize its generalization per-
formance M(Ctest|𝒞𝒞), where Ctest is a test circuit, and 𝒞𝒞 = 𝒞C1,… ,Ck} is a
family of training circuits. We define circuit divergence as the difference
between quantifiable circuit properties between train and test distribu-
tions. Here we emphasize five important circuit properties to measure
divergences: size s, depth d, the polynomial degree, the sampling of a
field 𝔽𝔽, and the number of variables ∣X∣. By quantifying the properties
of circuits in both the training and testing sets, circuit divergence can
be explicitly measured along these dimensions. In the following sec-
tions, we provide several examples for which tests of generalization
can be constructed through the manipulation of circuit divergence.

Generalization benchmarks
In this section, we illustrate the flexibility of algebraic circuits in design-
ing meaningful AI benchmarks. To demonstrate the generality of alge-
braic circuits, we begin by providing benchmarks that are analogous
to popular tests of compositional generalization: systematicity and
productivity9. We subsequently introduce novel, more challenging
problems that can be used to evaluate more general types of algorithmic
computation and abstraction. Finally, we demonstrate an approach to
reformulate tests of algorithmic generalization for pretrained LLMs.

Compositional generalization with algebraic circuits. There has
been recent interest in using compositional paradigms to system-
atically study the generalization capabilities of machine learning

Table 1 | Key circuit properties and their descriptions

Circuit property Description

Circuit C A directed acyclic graph that computes a polynomial.

Size s The number of edges in C.

Depth d The longest path from an input gate to an output gate.

deg(v) The degree of a gate v. If v is the output gate, deg(v) is the
degree of the polynomial.

Gate v𝔽𝔽 An element of a field 𝔽𝔽 with deg(v𝔽𝔽) = 0, and fan-in 0.

Gate vX A variable xi ∈ X with deg(vX) = 1, and fan-in 0.

Gate v+ A sum gate with deg(v+) = max(deg(u), deg(v)) for inputs u
and v, and fan-in 2.

Gate v× A product gate with deg(v×) = deg(u) + deg(v) for inputs u
and v, and fan-in 2.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | August 2025 | 1195–1205 1198

Perspective https://doi.org/10.1038/s42256-025-01092-w

models8,9,12,24,46,49–54. Here we demonstrate direct links to common forms
of compositional generalization using algebraic circuits.

Systematic compositional generalization and regression. Systematic
compositional generalization refers to the ability to recombine known
basis elements into novel combinations of fixed sequence size (Fig. 4a).
This means that test sets of systematicity are limited to novel combina-
tions of the same length as seen during training8,9. The analogue in
algebraic circuits is (1) to sample a family of circuits 𝒞𝒞 over a field 𝔽𝔽 of
a fixed size and depth, and (2) to generalize to circuits of the same size
and depth, but differentially sampling input gates and/or operators.
This can be implemented by choosing different samplers—P1 and P2—
that differentially sample gates (Fig. 4a). For example, the training set
of circuits could be constructed with input gates ai∈P1𝔽𝔽, and the testing
set of circuits could be constructed with input gates bi∈P2𝔽𝔽. (Note that
when samplers preferentially choose bi ≫ ai, this is analogous to the
common test of length generalization; Fig. 2a.)

In real-world data, the distributional properties of the training
distribution can often bias AI (or even human) learners towards learning
memorized short cuts, rather than learning algorithmic or syntactic
strategies that enable robust generalization7. However, given its infi-
nite vocabulary and the ability to sample circuits with well-defined
algorithmic properties, algebraic circuit complexity provides a com-
prehensive experimental sandbox for designing and sampling from
diverse data distributions. Through this sandbox, practitioners can
identify specific properties of train–test distributions that can either
introduce a distributional bias or confound to be assessed, or amelio-
rate these biases by counterbalancing the distribution. Interestingly,
we note that successful systematic compositional generalization on
input gates sampled from different distributions amounts to learning
a distributionally robust regression model (for example, Zhang et al.55
and Ghosh et al.56). This is because a circuit of specific size and depth
(for example, as shown in Fig. 4a) expresses a specific polynomial.
Generalization over a fixed circuit with a distribution shift of its input
gates (for example, field elements but not operator gates) would dem-
onstrate successful out-of-distribution generalization.

Previous notions of systematic compositional generalization
have specified ‘weak’ and ‘strong’ forms of systematicity57. Strong
systematicity refers to the ability to generalize to tokens (for exam-
ple, operands) in novel syntactic positions. (For example, if a model
is exclusively trained on expressions of the form a + b and a + c where
a is always the first token, a model that generalizes to b + a where a
is the last token would exhibit strong systematic generalization.)
Weak systematicity refers to the ability to exclusively generalize to
novel expressions in which a is always in the same syntactic position

(for example, always the first token). While this distinction does not
alter the semantics for commutative algebras (as discussed in this
paper), this distinction is important for many formal languages in
which permuting syntactic ordering produces novel semantics, such
as in many context-free grammars and non-commutative algebras.
(In these cases, circuits can be encoded as ordered directed acyclic
graphs, in which the order of parent/input gates is preserved.)

Productive compositional generalization. Productive compositional
generalization refers to the ability to generalize to sequences of longer
length. In the context of algebraic circuits, while systematicity focuses
on keeping circuit size and depth fixed while manipulating gates, pro-
ductive generalization focuses on manipulating circuit size and depth
(Fig. 4b). Thus, evaluating systematic and productive generalization
can be studied together; measures of generalization can be quantified
in a continuous manner by varying circuit parameters, such as gate
samplers (systematicity), size (productivity) and depth (productivity).
Understanding how each of these properties interact across training
and testing sets will provide a comprehensive quantification of gener-
alization over distinct algorithmic properties.

As algebraic circuits are circuit representations of algebraic
expressions, one can ask more generic questions about algebraic poly-
nomials. For example: given a class of polynomials as a training dataset,
what other class of polynomials will this model be able to compute?
Such a question goes beyond asking whether a model can systemati-
cally or productively generalize. Instead, it addresses a basic question
that can leverage other rich mathematical subfields (for example,
geometry, topology) to quantify algorithmic generalization. Algebraic
circuits provide a flexible framework to formalize problem complexity
beyond existing paradigms in compositional generalization.

Classification tasks: polynomial identity testing. Previous work
studying arithmetic abilities in transformer models has typically
focused on computing simple expressions with field elements
(a ∈ 𝔽𝔽; for example, 5 + 7 = ?), rather than abstract variables (x ∈ X; for
example, 2x1 + x2 + 7). Including variables in an algebraic expression
increases the polynomial degree (d ≥ 1), thereby increasing its complex-
ity and the need for abstractions. One approach to evaluating algebraic
circuits with variables is through polynomial identity testing, an active
area of research in computational complexity theory and computa-
tional algebra. Polynomial identity testing evaluates whether two
polynomials are equivalent (that is, P1(x1, …, xn) ≡ P2(x1, …, xn)). Posed
another way, one can ask whether P1(x1, …, xn) − P2(x1, …, xn) ≡ 0.

This problem can be naturally formulated as a binary classifica-
tion task for AI models. Importantly, studying the extent of algebraic

a

Train Test

Test

+ +

+ +
+

+

+ +
+

+ +
+

+

a2a1 b2b1

a1 a2 a3 a4 a5 a1 a2 a3 a4 a6 a7 a8a5

a1 + a2

ai ∈ �

a ≪ b

a1 + … + ak

ai ∈ �

a1 + … + ak+l

ai ∈ �

b1 + b2

bi ∈ �

b

Train

+
+

+
a1 a2

a1 a2 a3

Fig. 2 | Commonly used AI evaluations for length generalization with
arithmetic tasks. a,The predominant form of ‘length generalization’ in
transformers is evaluating performance on addition or multiplication
problems with larger integers than seen during training19–21,23,26,39. This would
be conceptually equivalent to a situation in which the circuit size and depth
are fixed, but the sampling of input gates (that is, field elements) differs across
training and testing sets. (However, see discussion in ‘Open theoretical and

empirical challenges’ on the nuances of computing long addition.) The notion of
length generalization is specific to the context of transformers, given that larger
digits require a larger context window. b, Another form of length generalization
studied in the literature is to generalize to arithmetic problems with more
operands (variables) than seen in the training set36. From a circuit complexity
perspective, these two approaches are distinct problems.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | August 2025 | 1195–1205 1199

Perspective https://doi.org/10.1038/s42256-025-01092-w

generalization by assessing train–test circuit divergences of polyno-
mial identity problems can be rigorously quantified, as each identity
problem can be encoded as a circuit (Fig. 5a). The complexity of a poly-
nomial identity testing problem can be scaled up by increasing the size,
depth and/or degree of the test problems. Moreover, machine learning
practitioners can leverage existing symbolic programs and solvers to
systematically generate large datasets (for example, SymPy; Meurer
et al.58). Polynomial identity testing thus provides a unique opportunity
to study AI generalization in terms of circuit complexity theory.

Sequence-to-sequence tasks: polynomial expansion or factori
zation. A wide application of generative models is in sequence-to-
sequence transduction tasks. One particularly impactful use case is
the development of AI models for code. AI models for code take in
code as inputs (for example, the programming language COBOL),
and generate a translation of that code (for example, Java). Despite its
potential importance for modernizing many existing codebases, there
is substantial scepticism as to whether generative models trained with

next-token prediction can reliably generate accurate code translations.
This is due to the fact that programming languages are not dictated by
autoregressive processes, and instead governed by algorithmic rules.

Learning on algebraic circuits provides a straightforward frame-
work to evaluate the ability of models to learn sequence-to-sequence
tasks that are governed by algorithmic rules. For example, the problem
of expanding or factorizing a polynomial is a problem that is governed
by the axiomatic rules of algebra (Fig. 5b). Like code translation, this
task requires transforming one sequence into another while maintain-
ing mathematical equivalence (or for code, semantic equivalence
despite syntactic differences). Importantly, there are explicit tools to
describe the complexity with which the translation occurs in algebraic
circuits. For example, a polynomial expansion transforms a factorized
representation (that is, shallow circuit) to a sum of monomials repre-
sentation (that is, deeper circuit). In contrast, a polynomial factoriza-
tion implements the inverse operation, which requires compressing a
large circuit to a smaller circuit. While a general interesting question is
to ask whether models trained on one type of transformation can learn
the other, this formalization has natural implications for understanding
how to design AI models for code. In particular, some programming
languages may have lower-level syntax (for example, COBOL) relative to
other languages, such as Python or Java. In either case, understanding
how lower-level and higher-level encodings of an expression (be they
algebraic or programmatic) requires learning useful abstractions and
the algorithms to translate them. Thus, studying the conditions by
which AI models can robustly parse and translate algebraic circuits
can shed light on the best strategies to train AI models to translate
programming languages.

Mechanistic interpretability with algebraic circuits
A major issue in assessing algorithmic generalization is the difficulty of
interpreting what goes awry when they fail to generalize. This is partly
due to the lack of interpretability of many benchmarks, which are often
presented in natural language, and for which verifiable algorithms
(for example, circuit diagrams or parse trees) do not exist14,59. A more
recent set of approaches in characterizing the interpretability of neural
network representations rely on the design of carefully constructed
tasks that have interpretable tasks, such as ground-truth parse trees
or circuit diagrams24,36,60. Algebraic circuits similarly provide verifiable
tasks and subtasks. While the input to an AI model might be a string
representation of a polynomial, that polynomial’s circuit encoding
provides its ground-truth encoding. Such an encoding makes it easy to
directly compare to the internal representations of a model, such as the
attention weights within a transformer (Fig. 6). This makes it possible
to track if the internal representations of a transformer computes the
algebraic expression similarly to the algorithm encoded by its circuit—
the normative algorithm to computing polynomials. More broadly,
the distance metric that computes the distance between attention
weights and ground-truth circuit edges (as shown in Fig. 6) can be used
as a regularization term to encourage transformers to learn normative
circuit computations, providing algorithmic and step-by-step informa-
tion to the model. Overall, evaluating AI models on algebraic problems
allows practitioners to adjudicate between theoretical models of circuit
computation with modern AI computation.

Evaluating LLMs with algebraic circuits
We have introduced algebraic circuit tasks within the context of train-
ing models from scratch. While it is difficult to evaluate pretrained
LLMs with precise levels of certainty due to the obscure nature of the
pretraining data and optimization protocols, algebraic tasks can still
be repurposed for LLMs. Previous work has demonstrated that LLMs
typically fail on mathematical problems, which require abstract reason-
ing on variables7,25,61. Thus, if an LLM calls specific tools (for example,
calculators) that make computing circuits with only field elements
too simple (for example, those illustrated in Figs. 1 and 2), we can

BOX 1

A formal sketch of algorithmic
generalization
Let B be a basis set of elements. Let U1 = B and Ui+1 = {u∣(u1, u2 ∈ U≤i)
and (u = u1 ∘ u2)}, where ∘ stands for any computable composition
operator on Ui (akin to production rules in context-free grammars or
operations in a field). Then, we define some universe set

U =⋃i∈ℕ
Ui

We define a function (task) T on U such that T: U → R (see below for
tasks T for algebraic circuits). T is a compositional function, where
∀u1, u2 ∈ U, T(u1 ∘ u2) = T(u1)*T(u2), where * stands for any computable
composition on R.

Let Dtrain and Dtest be distributions over U, and supp(Dtrain∣B) and
supp(Dtest∣B) to be the support of the basis set elements in Dtrain
and Dtest, respectively. We restrict Dtest to be a distribution in which
supp(Dtest∣B) ⊆ supp(Dtrain∣B). In addition, if a composable function ∘
is represented in Dtest (that is, u ∈ Dtest and u = b1 ∘ b2), then we require
that ∘ is also represented in Dtrain. We include these as requirements
for algorithmic generalization; it would be challenging, if not
impossible, to generalize to samples in Dtest if not all basis elements
and composition operators were provided in Dtrain.

We define algorithmic generalization as the evaluation of a
learned model M (for example, a neural network) where

Prx∼Dtest [M(x) = T(x)] > 1 − ϵ (1)

Here, M is only optimized from samples x ~ Dtrain, and ϵ is the
evaluation error of M on x ~ Dtest. A strong form of algorithmic
generalization over algebraic circuits would be to satisfy
equation (1) for all valid partitions of Dtrain and Dtest (with the
requisite support of basis sets and composition functions) in U for
uniformly small values of ϵ.

For algebraic circuit problems, T: U → R can be a function that
maps a circuit to: (1) a field element, for example, r ∈ ℝ (in the
case of circuit evaluation; Fig. 1); (2) {0, 1}, in the case of a
classification task, such as polynomial identity testing (Fig. 3a);
(3) another circuit C (that is, in the case of polynomial expansion
or factorization; Fig. 3b).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | August 2025 | 1195–1205 1200

Perspective https://doi.org/10.1038/s42256-025-01092-w

replace these with circuits containing variables x ∈ X (that is, those of
degree ≥1). For example, such tasks can include the aforementioned
polynomial identity testing or polynomial expansion and factorization
tasks, both of which can be made arbitrarily difficult and use arbitrary
sets of variables and tokens.

Given that previous studies have demonstrated poor abstract
reasoning abilities of LLMs, it is unlikely that current LLMs will be able
to compute arbitrary circuits out-of-the-box. However, recent tech-
niques in prompting LLMs have suggested the ability of LLMs to learn
from a few prompts (termed in-context learning)37,62–67. In other words,
a few question–answer pairs can be shown to the LLM in the context
window, followed by the target problem. This approach naturally offers
an approach to measure algorithmic generalization across circuit
divergence metrics: given a class of question–answer pairs gener-
ated from a specific circuit class, how well can a model generalize to a
problem generated from a different complexity class (Fig. 7)? Another
approach to systematically evaluate the ability of LLMs to compute
circuits is through chain-of-thought prompting. Recent theoretical
studies have indicated that leveraging chain-of-thought enables LLMs
to solve more challenging problems by enhancing their expressivity
and using scratchpads48,68–70. Practically, inducing chain-of-thought
in LLMs provides a way to verify whether LLMs sequentially ‘reason’
through steps that are analogous to ground-truth circuit computa-
tions (that is, following the edges from input gates). Moreover, as
algebraic circuits encode an explicit algorithm to compute an expres-
sion, each step through the circuit produces a verifiable intermediate
computation. This enables the evaluation of LLMs not only on verified
outputs but also on verified intermediate reasoning chains, providing
an opportunity to evaluate reinforcement learning approaches that

have been increasingly used to develop reasoning-based models4,71
Together, these experimental approaches provide concrete methods
from which to quantify algorithmic ability in LLMs.

Open theoretical and empirical challenges
Circuits provide a useful formalism to study algorithmic generaliza-
tion in AI systems. They are also a leading approach to quantifying
the computational complexity of algorithmic problems in theoretical
computer science. Previous AI reasoning literature has focused on
benchmarking AI to human-level reasoning72–75, or on how humans
learn algorithmic tasks49,76,77, both of which are important areas of inves-
tigation from the perspectives of cognitive science and AI. However,
this Perspective provides a complementary viewpoint from theoretical
computer science aimed to quantify reasoning based on generalizing
over algorithmic complexity. Here we highlight the primary challenges
associated with linking formal circuit models of computation with AI
generalization.

Circuit complexity and AI generalization
Algebraic circuit complexity studies the algorithmic resources required
to evaluate polynomials. Although there are other metrics of com-
plexity, such as Kolmogorov complexity in algorithmic information
theory78,79, this measure of complexity is incomputable, as it requires
searching over an infinite number of programs (although there are
efforts in approximating Kolmogorov complexity with alternative
methods; Wyeth and Sturtivant45, Johnston et al.80 and Dingle et al.81).
Thus, while circuits allow for the explicit computation of a problem,
it remains unclear as to whether notions from circuit complexity will
naturally map onto notions of AI generalization.

IID

TestTrain

Increase
circuit divergence

Maximal
circuit divergence

. .
 .

Define generalization splits based on circuit divergencesAlgebraic circuits

. .
 .

Model selection

Transformers, recurrent neural networks and so on

Quantify performance

G
eneralization

Δ Circuit size

Δ
C

irc
ui

t d
ep

th

AI evaluation lifecycle

a b

c d

� : field X: variablesC�,X,s,d : circuit
s: size d: depth

C�1,X1,s1,d1

C�1,X1,s1,d1

C�1,X1,s1,d1

C�1,X1,s1,d1

C�2,X2,s2,d2

C�k,Xk,sk,dk

Fig. 3 | Algorithmic capabilities of modern AI systems and architectures
can be studied with algebraic circuits. a, A set of problems can be identified
(and sampled) from algebraic circuits. b, Given a family of circuits, we can
identify circuit divergences—the divergence of different circuit properties, such
as size and depth—to design train and test datasets to evaluate the algorithmic
generalization capabilities of a model. IID, independent and identically

distributed. c,d, We can evaluate a model (or set of models) across these circuit
splits (d) and quantify their performance according to circuit divergences (c).
This AI evaluation lifecycle allows us to iterate and refine hypotheses regarding
the degree to which a model can generalize to a class of algorithms. Note that
circuit divergences can be measured beyond depth and size.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | August 2025 | 1195–1205 1201

Perspective https://doi.org/10.1038/s42256-025-01092-w

a

Train Test

Generalization within a circuit of fixed size and depth (systematicity)

Alter sampling of
input gates

Train Test

Alter sampling of
input and

operator gates

Generalization across circuit classes (productivity)

Alter circuit
size and depth

b

Train

+

a2a1

Test

+

b2b1

ai ∈P1
 � bi ∈P2

 �

ai ∈P1
 �

ui ∈K1
{+, ×}

bi ∈P1
 �

vi ∈K2
{+, ×}

��,X,D2,S2
��,X,D1,S1

a3a2a1

ν4

u2

u1

ν3

ν2ν1

ν7

ν5

ν2ν1

ν6

ν4ν3

b3b2b1

ν2

ν1

a3a2a1

u2

u1
a2a1

u1

a3a2a1

u2

u1
a2a1

u1

b1 b2 b3 b4 b5 b1 b2 b3 b4 b5 b6 b7 b8

di ≠ dj, ∀di ∈ D1, ∀dj ∈ D2

si ≠ sj, ∀si ∈ S1, ∀sj ∈ S2

Fig. 4 | Analogues of common compositional generalization benchmarks in
terms of algebraic circuits. a, A simpler form of generalization within an
algebraic circuit is generalizing to circuits of the same structure (size and depth),
but with a novel combination of gates. The analogue of this in compositionality is
commonly referred to as systematic compositional generalization9. (Learning
over circuits of fixed structure can also be viewed as learning a regression
model55.) On the left, we illustrate an example of a model that is trained on a
restricted family of circuits where the input gates are sampled from a field 𝔽𝔽 with
a sampling function P1. At test time, the model is required to generalize to circuits
of the same circuit class (in terms of size and depth), but where the input gates are

sampled using a different sampler P2. On the right, both input and operator gates
are chosen with separate samplers across train and test circuits, resulting in a
more difficult test of systematic compositionality. b, Productive compositional
generalization considers partitions of the training and testing sets across circuit
sizes and depths. The analogue of this in compositionality is commonly referred
to as productive compositional generalization. Given a family of circuits 𝒞𝒞𝔽𝔽𝔽X,D,S,
where D and S denote a set of depths di and size si, the primary experimental
manipulation is to construct a training set 𝒞𝒞𝔽𝔽𝔽X,D1 ,S1 and testing set 𝒞𝒞𝔽𝔽𝔽X,D2 ,S2 such
that there exists no overlap of a specific circuit class C𝔽𝔽𝔽X,di ,si between the training
and testing sets.

a Classification task: polynomial identity testing

Sequence-to-sequence task: polynomial expansion or factorizationb

Expansion Factorization

P1(x) = (x1 + 1)(x1 + 1) P2(x) = x1
2 + 2x1 + 1 P2(x) – P1 (x) ≡

?
0

(x1 + 1)(x1 + 1) (x1 + 1)(x1 + 1) x1
2 + 2x1 + 1 x1

2 + 2x1 + 1

×
+ +

11 x1x1

× ×
+

+

2 1x1 x1 x1

× ×

+

+ +
+

+

x1 x1 2 x1 1

×
×

x1 1 1

–1

x1

×
+ + × ×

+
+

21 11 x1 x1 x1x1x1

×
+ +× ×

+
+

2 11 1x1 x1 x1 x1x1

Fig. 5 | Algebraic problems as machine learning challenges. Previous work that
leverages arithmetic problems for machine learning studies is typically limited
to evaluating expressions with field elements. We introduce problems that can
be evaluated with abstract variables. a, Polynomial identity testing as a machine
learning classification task. Polynomial identity testing, an important and active
area of research in computational algebra, evaluates whether two polynomials
are equivalent. We illustrate two different polynomial expressions, P1(x) and
P2(x) with distinct circuit representations, yet are mathematically equivalent. To
reformulate this as a classification task for machine learning studies, one can ask
whether P2(x) − P1(x) ≡ 0 (right). b, Polynomial expansion and/or factorization

as a transduction (sequence to sequence) task. Common sequence-to-sequence
tasks in linguistics ask whether a model can expand a string using a set of rules or
a grammar, such as the AI benchmark tasks SCAN or PCFG8,9. In algebraic circuits,
this is analogous to expanding a polynomial in a factorized representation (left).
Given the one-to-one correspondence of polynomials, an additional approach is
to take a polynomial in its expanded form (sum of monomials), and generate the
factorized representation (right). This provides the ability to evaluate whether
an AI system can expand an encoding (expansion) or compress an encoding
(factorization).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | August 2025 | 1195–1205 1202

Perspective https://doi.org/10.1038/s42256-025-01092-w

Other studies have investigated the theoretical require-
ments for transformer models to evaluate formal languages and
algorithms48,69,82–84. While these studies provide useful insight into
what architectural components are likely important to implement
algorithmic problems of a particular complexity (for example, deeper
networks for circuit depth and wider context windows for circuit size),
these studies do not address the learnability of circuit algorithms.
Furthermore, it will be interesting to understand how frameworks
grounded in algorithmic circuit complexity (as presented here) relate
to other measures of compositionality, which are often measured by
properties of the computation graph of a task24, divergence of input–
output mapping of a task46, or divergence of a distribution of training
and testing tasks (for example, MCD)17.

Nevertheless, given the lack of any framework to measure algo-
rithmic complexity in AI, we believe that introducing a circuit com-
plexity framework from which to design quantitative benchmarks
will be an important step towards building a science of algorithmic
generalization. Furthermore, an algebraic circuit approach offers
extensive machinery to enable generalization through other algebraic
tools, such as minimum spanning/basis sets, their decompositions
and more.

Faithful algorithmic representation learning
Although an algebraic circuit encodes an explicit algorithm to compute
a polynomial at a particular level of abstraction (that is, follow the edges
from the input gates), it is possible that there are alternative viable
algorithms to compute that same polynomial. For example, would an
AI model simply follow the edges from the input gates to the output
gates? Or might it factorize the expression (leading to a shallower cir-
cuit) before evaluating that expression? Relatedly, the algorithmic steps

required to implement long addition (particularly when computing the
sum of two very large numbers) are not fully captured in the algebraic
circuits we present in this Perspective. (For example, long addition as
specified in Dziri et al.24 requires additional operators such as ‘carry’,
‘concatenate’, ‘modulo’ and so on.) Would AI models implement long
addition with a different set of computational gates and operators to
accommodate arithmetic with large numbers? Nevertheless, despite
these potential ambiguities, using a computational circuit framework
provides testable and verifiable hypotheses that allow us to empirically
evaluate what algorithm a model implements. Furthermore, use of a
circuit framework enables the design of quantitatively meaningful
algorithmic benchmarks such as those designed to test generalization
over algorithmic time complexity (circuit depth) or space complexity
(circuit size), among others. More broadly, a computational circuit
framework can naturally extend beyond algebraic circuits to formal
languages, such as those within the Chomsky hierarchy47 (for example,
context-free grammars), by characterizing the circuit parameters of the
language’s parse tree. Thus, this framework provides a unified theoreti-
cal foundation for quantifying algorithmic complexity across diverse
empirical evaluations, including arithmetic tasks, formal languages
and other compositional paradigms, and is an important step towards
understanding the faithfulness by which an AI system computes a class
of algorithms.

Alternatively, many previous approaches to faithfully learning
algorithmic representations often involve neurosymbolic methods.
These methods provide promising avenues to learn discrete algorith-
mic solutions to problems that are reliable and sample efficient53,85–88.
However, designing general purpose (rather than domain specific)
neurosymbolic models can be challenging, as they are often not fully
differentiable or require strong inductive biases. By contrast, although
statistical machine learning models (for example, transformers) are
‘general purpose’, the learning process is often obfuscated by learn-
ing dynamics that depend on architecture and complex optimization
protocols. This makes it difficult to ascertain what algorithms statistical
systems learn. However, recent studies in compositional representation
learning have suggested that different factors—such as choice of ini-
tialization and/or training curriculum—can have a strong influence on
whether a model learns compositionally49,89–92. In addition, developing
techniques from the field of mechanistic interpretability provides new
avenues from which to inspect whether the learned representations
in an AI model are faithful to the hypothesized underlying algorithm
(for example, Fig. 6; Olsson et al.64 and Friedman et al.93). Nevertheless,
leveraging diverse methods to carefully investigate the algorithms
that symbolic and statistical AI models learn will be important for
their interpretability, reliability and overall safety to ensure reliable
deployment of AI systems.

Token embedding
Positional encoding

Self-attention
MLP

Compare

Circuit
adjacency matrix

Map circuit
to matrix
encoding

Circuit representation

Extract
attention
weights

Interpretability analysis: compare attention weights
with ground-truth circuit edges

x1 x3+x2+

x1 + x2 + x3
QKT

Attention weights ()√dk

+
+

x1 x2 x3

x 3
x 2

+
x 1

+

x
3

x
2

+
x

1
+

x1 x2 x3+ + x1 x2 x3+ +

Fig. 6 | Using an algebraic circuit’s adjacency matrix as a ground-truth
comparison to interpret transformer attention representations. Left: the
transformer’s attention mechanism provides a useful way to peer into the
representations of its input tokens. When the input is an algebraic expression
(presented as a string of tokens), the attention matrix can be investigated to
uncover the relationships between tokens (that is, operators and operands).
Right: however, an algebraic expression can always be mapped to a circuit

encoding, which can be represented as the adjacency matrix of that circuit.
Middle: this allows for the direct comparison between attention weights (that is,
the dot product between the query (Q) and transposed key (K) matrix) and the
ground-truth circuit representation. This distance between the transformer’s
attention weights and the ground-truth circuit adjacency matrix can also be used
as a regularizer to encourage learning circuit algorithms via attention weights.
MLP, multilayer perceptron.

Few-shot prompting

A1

A2

?

. .
 .

C�1,X1,s1,d1

C�1,X1,s1,d1

C�k,Xk,sk,dk

Fig. 7 | The algebraic generalization capability across circuit divergence
metrics can be evaluated through few-shot prompting in LLMs. Given a set of
question (left) and answer (right, Ai) pairs sampled from a specific circuit class
C𝔽𝔽1 𝔽X1 𝔽s1 𝔽d1 as prompts, we can ask an LLM to what degree it can generalize to
algebraic problems sampled from a different circuit class C𝔽𝔽k 𝔽Xk 𝔽sk 𝔽dk.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | August 2025 | 1195–1205 1203

Perspective https://doi.org/10.1038/s42256-025-01092-w

Conclusion
Quantifying the algorithmic ability of AI systems is difficult owing
to the lack of a theoretical framework from which to establish mean-
ingful benchmarks. While there has been an increasing number of
studies that have employed algebraic and compositional tasks to reli-
ably elicit failure modes of transformers and LLMs, no theoretical
framework exists to interpret these findings. In this Perspective, we
provide a parsimonious framework—algebraic circuit complexity—to
evaluate the extent of a model’s algorithmic generalization ability in
terms of their circuit divergences. In contrast to other formulations
of complexity, such as Kolmogorov complexity, encoding algorithmic
problems as circuits provides an explicitly computable formulation.
The rich expressivity of algebraic problems, the data-rich nature of
producing algebraic datasets and the close links with algebraic circuits
to other mathematical fields, makes algebraic circuit complexity a
fruitful approach to quantify algorithmic generalization in AI systems.
More generally, the circuit complexity framework introduced here
(with algebraic functions) can be naturally extended to other compu-
tational problems (for example, formal languages, Boolean circuits).
We hope this Perspective provides the theoretical groundwork for
future studies to quantify algorithmic generalization in modern AI
systems with circuits.

References
1.	 Bubeck, S. et al. Sparks of artificial general intelligence:

early experiments with GPT-4. Preprint at https://arxiv.org/
abs/2303.12712 (2023).

2.	 Wei, J. et al. Emergent abilities of large language models.
Trans. Mach. Learn. Res. (2022); https://openreview.net/
pdf?id=yzkSU5zdwD

3.	 Webb, T., Holyoak, K. J. & Lu, H. Emergent analogical reasoning in
large language models. Nat. Hum. Behav. https://doi.org/10.1038/
s41562-023-01659-w (2023).

4.	 DeepSeek-AI et al. DeepSeek-R1: incentivizing reasoning
capability in LLMs via reinforcement learning. Preprint at
https://arxiv.org/abs/2501.12948 (2025).

5.	 Kim, N., Linzen, T. & Smolensky, P. Uncontrolled lexical exposure
leads to overestimation of compositional generalization in
pretrained models. Preprint at https://arxiv.org/abs/2212.10769
(2022).

6.	 Schaeffer, R., Miranda, B. & Koyejo, S. Are emergent abilities of
large language models a mirage? Adv. Neural Inf. Process. Syst.
36, 55565–55581 (2023).

7.	 Wu, Z. et al. Reasoning or eeciting? Exploring the capabilities
and limitations of language models through counterfactual
tasks. In Proc. 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers) (eds Duh, K. et al.) 1819–1862
(Association for Computational Linguistics, 2024); https://doi.org/
10.18653/v1/2024.naacl-long.102

8.	 Lake, B. & Baroni, M. Generalization without systematicity:
on the compositional skills of sequence-to-sequence recurrent
networks. In International Conference on Machine Learning
2873–2882 (PMLR, 2018); http://proceedings.mlr.press/v80/
lake18a.html

9.	 Hupkes, D., Dankers, V., Mul, M. & Bruni, E. Compositionality
decomposed: how do neural networks generalise? J. Artif. Intell.
Res. 67, 757–795 (2020).

10.	 Hudson, D. A. & Manning, C. D. GQA: a new dataset for real-world
visual reasoning and compositional question answering. In
Proc. IEEE/CVF Conference on Computer Vision and Pattern
Recognition 6700–6709 (IEEE, 2019); https://openaccess.
thecvf.com/content_CVPR_2019/html/Hudson_GQA_A_New_
Dataset_for_Real-World_Visual_Reasoning_and_Compositional_
CVPR_2019_paper.html

11.	 Yang, G. R., Ganichev, I., Wang, X.-J., Shlens, J. & Sussillo, D.
A dataset and architecture for visual reasoning with a working
memory. In Computer Vision – ECCV 2018 Lecture Notes in
Computer Science Vol. 11214 (eds Ferrari, V. et al.) 729–745
(Springer, 2018); https://doi.org/10.1007/978-3-030-01249-6_44

12.	 Ito, T., Dan, S., Rigotti, M., Kozloski, J. & Campbell, M. On the
generalization capacity of neural networks during generic
multimodal reasoning. In International Conference on Learning
Representations (2024); https://openreview.net/forum?id=zyBJod
Mrn5¬eId=zyBJodMrn5

13.	 Johnson, J. et al. CLEVR: a diagnostic dataset for compositional
language and elementary visual reasoning. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
1988–1997 (IEEE, 2017); https://doi.org/10.1109/CVPR.2017.215

14.	 Clark, C. et al. BoolQ: exploring the surprising difficulty of natural
yes/no questions. In Proc. 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers) (eds
Burstein, J. et al.) 2924–2936 (Association for Computational
Linguistics, 2019); https://doi.org/10.18653/v1/N19-1300

15.	 Kim, N. & Linzen, T. COGS: a compositional generalization
challenge based on semantic interpretation. In Proc. 2020
Conference on Empirical Methods in Natural Language Processing
(EMNLP) (eds Webber, B. et al.) 9087–9105 (Association for
Computational Linguistics, 2020); https://doi.org/10.18653/
v1/2020.emnlp-main.731

16.	 Ruis, L., Andreas, J., Baroni, M., Bouchacourt, D. & Lake, B. M. A
benchmark for systematic generalization in grounded language
understanding. Adv. Neural Inf. Process. Syst. 33, 19861–19872
(2020).

17.	 Keysers, D. et al. Measuring compositional generalization:
a comprehensive method on realistic data. In International
Conference on Learning Representations (2020); https://
openreview.net/forum?id=SygcCnNKwr&utm_campaign=Graph

18.	 Kudo, K. et al. Do deep neural networks capture compositionality
in arithmetic reasoning? In Proc. 17th Conference of the European
Chapter of the Association for Computational Linguistics (Vlachos, A.
& Augenstein, I.) 1351–1362 (Association for Computational
Linguistics, 2023); https://doi.org/10.18653/v1/2023.eacl-main.98

19.	 McLeish, S. et al. Transformers can do arithmetic with the right
embeddings. Adv. Neural Inf. Proc. Syst. 37, 108012–108041
(2024).

20.	 Zhou, H. et al. What algorithms can transformers learn?
A study in length generalization. In International Conference
on Learning Representations (2024); https://openreview.net/
forum?id=AssIuHnmHX

21.	 Shen, R. et al. Positional description matters for transformers
arithmetic. In International Conference on Learning
Representations (2024); https://openreview.net/forum?id=
ZMuPAOY8Oz

22.	 Saxton, D., Grefenstette, E., Hill, F. & Kohli, P. Analysing mathematical
reasoning abilities of neural models. In International Conference
on Learning Representations (2019); https://openreview.net/
forum?id=H1gR5iR5FX

23.	 Lee, N., Sreenivasan, K., Lee, J. D., Lee, K. & Papailiopoulos, D.
Teaching arithmetic to small transformers. In International
Conference on Learning Representations (2023); https://openreview.
net/forum?id=dsUB4bst9S

24.	 Dziri, N. et al. Faith and fate: limits of transformers on
compositionality. Adv. Neural Inf. Process. Syst. 36, 70293–70332
(2023).

25.	 McCoy, R. T., Yao, S., Friedman, D., Hardy, M. & Griffiths, T. L.
Embers of autoregression show how large language models are
shaped by the problem they are trained to solve. Proc. Natl Acad.
Sci. USA 121, e2322420121 (2024).

http://www.nature.com/natmachintell
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2303.12712
https://openreview.net/pdf?id=yzkSU5zdwD
https://openreview.net/pdf?id=yzkSU5zdwD
https://doi.org/10.1038/s41562-023-01659-w
https://doi.org/10.1038/s41562-023-01659-w
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2212.10769
https://doi.org/10.18653/v1/2024.naacl-long.102
https://doi.org/10.18653/v1/2024.naacl-long.102
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Hudson_GQA_A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Hudson_GQA_A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Hudson_GQA_A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Hudson_GQA_A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.html
https://doi.org/10.1007/978-3-030-01249-6_44
https://openreview.net/forum?id=zyBJodMrn5¬eId=zyBJodMrn5
https://openreview.net/forum?id=zyBJodMrn5¬eId=zyBJodMrn5
https://doi.org/10.1109/CVPR.2017.215
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://openreview.net/forum?id=SygcCnNKwr&utm_campaign=Graph
https://openreview.net/forum?id=SygcCnNKwr&utm_campaign=Graph
https://doi.org/10.18653/v1/2023.eacl-main.98
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=ZMuPAOY8Oz
https://openreview.net/forum?id=ZMuPAOY8Oz
https://openreview.net/forum?id=H1gR5iR5FX
https://openreview.net/forum?id=H1gR5iR5FX
https://openreview.net/forum?id=dsUB4bst9S
https://openreview.net/forum?id=dsUB4bst9S

Nature Machine Intelligence | Volume 7 | August 2025 | 1195–1205 1204

Perspective https://doi.org/10.1038/s42256-025-01092-w

26.	 Zhou, Y. et al. Transformers can achieve length generalization
but not robustly. In International Conference on Learning
Representations (2024); https://openreview.net/forum?id=
DWkWIh3vFJ

27.	 Sinha, S., Premsri, T. & Kordjamshidi, P. A survey on compositional
learning of AI models: theoretical and experimental
practices. Trans. Mach. Learn. Res. https://openreview.net/
forum?id=BXDxwItNqQ (2024).

28.	 Frege, G. in Logic and Philosophy for Linguists (ed. Moravcsik, J. M. E.)
279–298 (De Gruyter, 1975); https://doi.org/10.1515/
9783111546216-018

29.	 Carnap, R. Meaning and Necessity: A Study in Semantics and
Modal Logic Vol. 30 (Univ. Chicago Press, 1988).

30.	 Russin, J., McGrath, S. W., Williams, D. J. & Elber-Dorozko, L. From
Frege to chatGPT: compositionality in language, cognition, and
deep neural networks. Preprint at https://arxiv.org/abs/2405.15164
(2024).

31.	 Kazemnejad, A., Padhi, I., Natesan Ramamurthy, K., Das, P. &
Reddy, S. The impact of positional encoding on length
generalization in transformers. Ad. Neural Inf. Process. Syst. 36,
24892–24928 (2023).

32.	 Hupkes, D. et al. A taxonomy and review of generalization
research in NLP. Nat. Mach. Intell. 5, 1161–1174 (2023).

33.	 Fodor, J. A. & Pylyshyn, Z. W. Connectionism and cognitive
architecture: a critical analysis. Cognition 28, 3–71 (1988).

34.	 Fodor, J. & McLaughlin, B. P. Connectionism and the problem of
systematicity: why Smolensky’s solution doesn’t work. Cognition
35, 183–204 (1990).

35.	 Smolensky, P. in Connectionism and the Philosophy of Mind
(eds Horgan, T. & Tienson, J.) 281–308 (Springer, 1991);
https://doi.org/10.1007/978-94-011-3524-5_13

36.	 Deletang, G. et al. Neural networks and the chomsky hierarchy.
In International Conference on Learning Representations (2022);
https://openreview.net/forum?id=WbxHAzkeQcn

37.	 Zhou, H. et al. Teaching algorithmic reasoning via in-context
learning. In International Conference on Learning Representations
(2023); https://openreview.net/forum?id=6dlC7E1H_9

38.	 Ruoss, A. et al. Randomized positional encodings boost length
generalization of transformers. In Proc. 61st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers)
(eds Rogers, A. et al.) 1889–1903 (Association for Computational
Linguistics, 2023); https://doi.org/10.18653/v1/2023.acl-short.161

39.	 Jelassi, S. et al. Length generalization in arithmetic transformers.
Preprint at https://arxiv.org/abs/2306.15400 (2023).

40.	 Wang, C., Zheng, B., Niu, Y. & Zhang, Y. in Natural Language
Processing and Chinese Computing (eds Wang, L. et al.) 758–769
(Springer, 2021); https://doi.org/10.1007/978-3-030-88480-2_61

41.	 Nogueira, R., Jiang, Z. & Lin, J. Investigating the limitations of
transformers with simple arithmetic tasks. Preprint at https://arxiv.
org/abs/2102.13019 (2021).

42.	 Shpilka, A. & Yehudayoff, A. Arithmetic circuits: a survey of recent
results and open questions. Found. Trends Theor. Comput. Sci. 5,
207–388 (2010).

43.	 Bürgisser, P., Clausen, M. & Shokrollahi, M. A. Algebraic
Complexity Theory Vol. 315 (Springer Science & Business Media,
2013).

44.	 Arora, S. & Barak, B. Computational Complexity: A Modern
Approach (Cambridge Univ. Press, 2009).

45.	 Wyeth, C. & Sturtivant, C. A circuit complexity formulation of
algorithmic information theory. Physica D 456, 133925 (2023).

46.	 Ram, P., Klinger, T. & Gray, A. G. What makes models
compositional? A theoretical view: with supplement. Preprint at
https://arxiv.org/abs/2405.02350 (2024).

47.	 Chomsky, N. Three models for the description of language.
IRE Trans. Inf. Theory 2, 113–124 (1956).

48.	 Strobl, L., Merrill, W., Weiss, G., Chiang, D. & Angluin, D. What
formal languages can transformers express? A survey. Trans.
Assoc. Comput. Linguist. 12, 543–561 (2024).

49.	 Lake, B. M. & Baroni, M. Human-like systematic generalization
through a meta-learning neural network. Nature https://doi.org/
10.1038/s41586-023-06668-3 (2023).

50.	 Ruis, L. & Lake, B. Improving systematic generalization through
modularity and augmentation. Preprint at https://arxiv.org/abs/
2202.10745 (2022).

51.	 Ontanon, S., Ainslie, J., Fisher, Z. & Cvicek, V. Making
transformers solve compositional tasks. In Proc. 60th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers) (eds Muresan, S. et al) 3591–3607
(Association for Computational Linguistics, 2022); https://doi.
org/10.18653/v1/2022.acl-long.251

52.	 Csordás, R., Irie, K. & Schmidhuber, J. The devil is in the
detail: simple tricks improve systematic generalization of
transformers. In Proc. 2021 Conference on Empirical Methods in
Natural Language Processing (eds Moens, M.-F. et al.) 619–634
(Association for Computational Linguistics, 2021); https://doi.org/
10.18653/v1/2021.emnlp-main.49

53.	 Klinger, T. et al. Compositional program generation for systematic
generalization. In Proc. 2021 Conference on Empirical Methods
in Natural Language Processing (2023); https://openreview.net/
forum?id=Wxj9U0ySU-s

54.	 Poggio, T. & Fraser, M. Compositional sparsity of learnable
functions. article, center for brains, minds and machines (CBMM).
MIT Libraries https://dspace.mit.edu/handle/1721.1/153475
(2024).

55.	 Zhang, X., Blanchet, J., Ghosh, S. & Squillante, M. S. A class of
geometric structures in transfer learning: minimax bounds
and optimality. In Proc. 25th International Conference on
Artificial Intelligence and Statistics 3794–3820 (PMLR, 2022);
https://proceedings.mlr.press/v151/zhang22a.html

56.	 Ghosh, S., Squillante, M. & Wollega, E. Efficient generalization
with distributionally robust learning. Adv. Neural Inf. Process. Syst.
34, 28310–28322 (2021).

57.	 Hadley, R. F. Systematicity in connectionist language learning.
Mind Lang. 9, 247–272 (1994).

58.	 Meurer, A. et al. SymPy: symbolic computing in Python.
PeerJ Comput. Sci. 3, e103 (2017).

59.	 Hendrycks, D. et al. Measuring massive multitask
language understanding. In International Conference on
Learning Representations (2020); https://openreview.net/
forum?id=d7KBjmI3GmQ

60.	 Andreas, J. Measuring compositionality in representation
learning. In International Conference on Learning Representations
(2018); https://openreview.net/forum?id=HJz05o0qK7

61.	 Nezhurina, M., Cipolina-Kun, L., Cherti, M. & Jitsev, J. Alice
in Wonderland: simple tasks showing complete reasoning
breakdown in state-of-the-art large language models. Preprint at
https://arxiv.org/abs/2406.02061 (2024).

62.	 Chan, S. C. Y. et al. Transformers generalize differently
from information stored in context vs in weights. Preprint at
https://arxiv.org/abs/2210.05675 (2022).

63.	 Reddy, G. The mechanistic basis of data dependence and
abrupt learning in an in-context classification task.
In International Conference on Learning Representations (2024);
https://openreview.net/forum?id=aN4Jf6Cx69

64.	 Olsson, C. et al. In-context learning and induction heads. Preprint
at https://arxiv.org/abs/2209.11895 (2022).

65.	 Zhou, D. et al. Least-to-most prompting enables complex
reasoning in large language models. In International Conference
on Learning Representations (2022); https://openreview.net/
forum?id=WZH7099tgfM

http://www.nature.com/natmachintell
https://openreview.net/forum?id=DWkWIh3vFJ
https://openreview.net/forum?id=DWkWIh3vFJ
https://openreview.net/forum?id=BXDxwItNqQ
https://openreview.net/forum?id=BXDxwItNqQ
https://doi.org/10.1515/9783111546216-018
https://doi.org/10.1515/9783111546216-018
https://arxiv.org/abs/2405.15164
https://doi.org/10.1007/978-94-011-3524-5_13
https://doi.org/10.1007/978-94-011-3524-5_13
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=6dlC7E1H_9
https://doi.org/10.18653/v1/2023.acl-short.161
https://arxiv.org/abs/2306.15400
https://doi.org/10.1007/978-3-030-88480-2_61
https://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2405.02350
https://doi.org/10.1038/s41586-023-06668-3
https://doi.org/10.1038/s41586-023-06668-3
https://arxiv.org/abs/2202.10745
https://arxiv.org/abs/2202.10745
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://openreview.net/forum?id=Wxj9U0ySU-s
https://openreview.net/forum?id=Wxj9U0ySU-s
https://dspace.mit.edu/handle/1721.1/153475
https://proceedings.mlr.press/v151/zhang22a.html
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=HJz05o0qK7
https://arxiv.org/abs/2406.02061
https://arxiv.org/abs/2210.05675
https://openreview.net/forum?id=aN4Jf6Cx69
https://arxiv.org/abs/2209.11895
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

Nature Machine Intelligence | Volume 7 | August 2025 | 1195–1205 1205

Perspective https://doi.org/10.1038/s42256-025-01092-w

66.	 Wei, J. et al. Chain-of-thought prompting elicits reasoning in large
language models. Adv. Neural Inf. Process. Syst. 35, 24824–24837
(2022).

67.	 Nye, M. et al. Show your work: scratchpads for intermediate
computation with language models. OpenReview.net
https://openreview.net/forum?id=iedYJm92o0a&ref=morioh.
com&utm_source=morioh.com (2021).

68.	 Feng, G. et al. Towards revealing the mystery behind chain of
thought: a theoretical perspective. Adv. Neural Inf. Process. Syst.
36, 70757–70798 (2023).

69.	 Merrill, W. & Sabharwal, A. The expressive power of transformers
with chain of thought. In International Conference on
Learning Representations (2024); https://openreview.net/
forum?id=NjNGlPh8Wh

70.	 Li, Z., Liu, H., Zhou, D. & Ma, T. Chain of thought empowers
transformers to solve inherently serial problems. In
International Conference on Learning Representations (2024);
https://openreview.net/forum?id=3EWTEy9MTM

71.	 Shao, Z. et al. DeepSeekMath: pushing the limits of mathematical
reasoning in open language models. Preprint at https://arxiv.org/
abs/2402.03300 (2024).

72.	 Mitchell, M., Palmarini, A. B. & Moskvichev, A. Comparing
humans, GPT-4, and GPT-4V on abstraction and reasoning tasks.
Preprint at https://arxiv.org/abs/2311.09247 (2023).

73.	 LeGris, S., Vong, W. K., Lake, B. M. & Gureckis, T. M. H-ARC:
a robust estimate of human performance on the abstraction
and reasoning corpus benchmark. Preprint at https://arxiv.org/
abs/2409.01374 (2024).

74.	 McClelland, J. L. et al. Letting structure emerge: connectionist
and dynamical systems approaches to cognition. Trends Cogn.
Sci. 14, 348–356 (2010).

75.	 Chollet, F. On the measure of intelligence. Preprint at https://arxiv.
org/abs/1911.01547 (2019).

76.	 Fedor, A., Varga, M. & Szathmáry, E. Semantics boosts syntax in
artificial grammar learning tasks with recursion. J. Exp. Psychol.
Learn. Mem. Cogn. 38, 776–782 (2012).

77.	 Lampinen, A. K. et al. Language models, like humans, show
content effects on reasoning tasks. PNAS Nexus 3, 233 (2024).

78.	 Kolmogorov, A. N. Three approaches to the quantitative
definition of information. Int. J. Comput. Math. 2, 157–168 (1968).

79.	 Li, M. & Vitányi, P. An Introduction to Kolmogorov Complexity and
Its Applications Texts in Computer Science (Springer, 2019).

80.	 Johnston, I. G. et al. Symmetry and simplicity spontaneously
emerge from the algorithmic nature of evolution. Proc. Natl Acad.
Sci. USA 119, e2113883119 (2022).

81.	 Dingle, K., Camargo, C. Q. & Louis, A. A. Input–output maps
are strongly biased towards simple outputs. Nat. Commun. 9,
761 (2018).

82.	 Merrill, W. & Sabharwal, A. A little depth goes a long way:
the expressive power of log-depth transformers. Preprint at
https://arxiv.org/abs/2503.03961 (2025).

83.	 Yang, A., Chiang, D. & Angluin, D. Masked hard-attention
transformers recognize exactly the star-free languages.
Adv. Neural Inf. Proc. Syst. 37, 10202–10235 (2024).

84.	 Amiri, A., Huang, X., Rofin, M. & Hahn, M. Lower bounds for
chain-of-thought reasoning in hard-attention transformers.
Preprint at https://arxiv.org/abs/2502.02393 (2025).

85.	 Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level
concept learning through probabilistic program induction.
Science 350, 1332–1338 (2015).

86.	 Poesia, G. & Goodman, N. D. Peano: learning formal mathematical
reasoning. Phil. Trans. R. Soc. A 381, 20220044 (2023).

87.	 Trinh, T. H., Wu, Y., Le, Q. V., He, H. & Luong, T. Solving olympiad
geometry without human demonstrations. Nature 625, 476–482
(2024).

88.	 Ellis, K. et al. DreamCoder: bootstrapping inductive program
synthesis with wake–sleep library learning. In Proc. 42nd ACM
SIGPLAN International Conference on Programming Language
Design and Implementation 835–850 (Association for Computing
Machinery, 2021); https://doi.org/10.1145/3453483.3454080

89.	 Lippl, S. & Stachenfeld, K. When does compositional structure
yield compositional generalization? A kernel theory. Preprint at
https://arxiv.org/abs/2405.16391 (2024).

90.	 Ito, T. et al. Compositional generalization through abstract
representations in human and artificial neural networks.
Adv. Neural Inf. Process. Syst. 35, 32225–32239 (2022).

91.	 Zhang, Z., Lin, P., Wang, Z., Zhang, Y. & Xu, Z.-Q. J. Initialization
is critical to whether transformers fit composite functions by
reasoning or memorizing. Adv. Neural Inf. Proc. Syst. 37,
14093–14126 (2024).

92.	 Saglietti, L., Mannelli, S. & Saxe, A. An analytical theory of
curriculum learning in teacher–student networks. Adv. Neural Inf.
Process. Syst. 35, 21113–21127 (2022).

93.	 Friedman, D., Wettig, A. & Chen, D. Learning transformer programs.
Adv. Neural Inf. Process. Syst. 36, 49044–49067 (2023).

Acknowledgements
We thank M. Carmosino and K. Srivastava for helpful discussions on
earlier versions of the paper. We acknowledge funding support from
the Exploratory Science Councils at IBM Research.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence should be addressed to Takuya Ito.

Peer review information Nature Machine Intelligence thanks
Martha Lewis, and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© Springer Nature Limited 2025

http://www.nature.com/natmachintell
https://openreview.net/forum?id=iedYJm92o0a&ref=morioh.com&utm_source=morioh.com
https://openreview.net/forum?id=iedYJm92o0a&ref=morioh.com&utm_source=morioh.com
https://openreview.net/forum?id=iedYJm92o0a&ref=morioh.com&utm_source=morioh.com
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=3EWTEy9MTM
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2311.09247
https://arxiv.org/abs/2409.01374
https://arxiv.org/abs/2409.01374
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2503.03961
https://arxiv.org/abs/2502.02393
https://doi.org/10.1145/3453483.3454080
https://arxiv.org/abs/2405.16391
http://www.nature.com/reprints

	Quantifying artificial intelligence through algorithmic generalization

	Algebraic circuits

	Definition

	Properties

	Towards a science of generalization with algebraic circuits

	The importance of learning composable functions

	A formal sketch of algorithmic generalization

	Circuit divergence as a metric of generalization

	Generalization benchmarks

	Compositional generalization with algebraic circuits
	Classification tasks: polynomial identity testing
	Sequence-to-sequence tasks: polynomial expansion or factori­zation

	Mechanistic interpretability with algebraic circuits

	Evaluating LLMs with algebraic circuits

	Open theoretical and empirical challenges

	Circuit complexity and AI generalization

	Faithful algorithmic representation learning

	Conclusion

	Acknowledgements

	Fig. 1 Examples of algebraic expressions represented as circuits.
	Fig. 2 Commonly used AI evaluations for length generalization with arithmetic tasks.
	Fig. 3 Algorithmic capabilities of modern AI systems and architectures can be studied with algebraic circuits.
	Fig. 4 Analogues of common compositional generalization benchmarks in terms of algebraic circuits.
	Fig. 5 Algebraic problems as machine learning challenges.
	Fig. 6 Using an algebraic circuit’s adjacency matrix as a ground-truth comparison to interpret transformer attention representations.
	Fig. 7 The algebraic generalization capability across circuit divergence metrics can be evaluated through few-shot prompting in LLMs.
	Table 1 Key circuit properties and their descriptions.

