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Multitask representations in the human 
cortex transform along a sensory-to-motor 
hierarchy

Takuya Ito    1 & John D. Murray    1,2,3 

Human cognition recruits distributed neural processes, yet the organizing 
computational and functional architectures remain unclear. Here, we 
characterized the geometry and topography of multitask representations 
across the human cortex using functional magnetic resonance imaging 
during 26 cognitive tasks in the same individuals. We measured the 
representational similarity across tasks within a region and the alignment 
of representations between regions. Representational alignment varied 
in a graded manner along the sensory–association–motor axis. Multitask 
dimensionality exhibited compression then expansion along this gradient. 
To investigate computational principles of multitask representations, 
we trained multilayer neural network models to transform empirical 
visual-to-motor representations. Compression-then-expansion 
organization in models emerged exclusively in a rich training regime, which 
is associated with learning optimized representations that are robust to 
noise. This regime produces hierarchically structured representations 
similar to empirical cortical patterns. Together, these results reveal 
computational principles that organize multitask representations across 
the human cortex to support multitask cognition.

Humans perform a variety of tasks in daily life that involve diverse cog-
nitive functions. What are the neural and computational architectures 
that facilitate multitask cognition? Current efforts to uncover the neural 
bases of human cognition typically design carefully controlled experi-
ments that target specific cognitive functions while measuring brain 
activity1,2. While this approach has been fruitful for mapping regional 
activations by cognitive processes, it is typically unable to reveal the 
organization of task representations and their transformations across 
the brain. By contrast, advancements in data analysis have enabled the 
characterization of representational content and transformations of 
rich sensory stimuli within the visual cortical hierarchy of individu-
als3–5. However, how the brain’s large-scale organization supports the 
representational capacity that enables its diverse cognitive functions 
beyond sensory perception remains poorly studied.

Univariate task-driven functional magnetic resonance imaging 
(fMRI) studies have revealed the spatial organization of cognitive 
specialization across the cortex6 by mapping the stimulus response 
properties of brain areas and voxels. Such studies have identified 
regional correlates of working memory7, visual processing8 and motor 
function9, among other cognitive functions. Complementing these 
studies, meta-analyses of neuroimaging studies have made progress 
in identifying cortical coactivation patterns across many tasks, afford-
ing insight into how brain regions coactivate during tasks10–12. Despite 
these initial advances in describing cortical organization of cognitive 
processes and their correspondence to intrinsic brain organization11, 
univariate task activation studies are limited in their ability to reveal 
the fine-grained (voxel-wise) representations within brain regions and 
how these representations transform across the cortex.
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approximate these representations. To investigate these questions, we 
used a recently published human fMRI dataset with 26 tasks collected 
per participant18. To characterize the cortex-wide organization of 
multitask representations, we relate the representational topographies 
to established large-scale cortical gradients19 (reflecting hierarchy) 
derived from resting-state functional connectivity (RSFC). Relating 
multitask representational organization, which is derived from task 
fMRI, to RSFC hierarchical gradients, which are derived from task-free 
MRI, directly grounds regional variations in task representation with 
the intrinsic organization of the human cortex.

To study how representations transformed across brain regions, 
we first quantified the multitask representations within each cortical 
area using RSA. We then measured the alignment of representations 
between all pairs of cortical areas. This revealed that the axis of great-
est representation variation spanned from sensory to association to 
motor organization. We next quantified the dimensionality of multitask 
representations across this sensory-to-motor hierarchy, finding that 
multitask representational dimensionality first compressed from 
sensory to association areas and then expanded from association to 
motor areas. This stands in contrast to the expansion then compres-
sion of hidden representations documented in task-optimized deep 
ANNs20,21. To investigate the computational principles by which we 
could reproduce brain-like representations, we trained feedforward 
ANNs directly on multitask brain activity. Compression-then-expansion 
organization in ANNs emerged exclusively in a rich feature learning 
regime, which is associated with learned representations that are 
robust to noise22,23. This regime produced hierarchically structured 
representations similar to those in the brain. Together, our findings 
reveal the hierarchical organization of multitask representations in 
the human brain and establish a framework to produce brain-like rep-
resentations in computational models.

One leading approach to investigate the structure of task rep-
resentations within and across cortical regions is representational 
similarity analysis (RSA)4. RSA measures geometrical properties of task 
representations within a brain region by comparing the similarity of 
multivariate activations (for example, multiple voxels in fMRI) across 
different task conditions. Representational geometries can then be 
compared between brain regions4 and between brain data and com-
putational models5,13. While this approach can identify task-relevant 
representational geometries for specific brain regions, most studies 
have typically been limited to isolated tasks in specific domains (for 
example, perceptual tasks)14,15. This limits the interpretation of repre-
sentational geometry within and between brain regions because such 
tasks only recruit a small subset of the diverse cognitive processes of 
which humans are capable. By contrast, the study of many tasks can 
clarify the general cognitive principles by which a single brain archi-
tecture can implement many diverse functions.

Understanding how the human brain achieves multitask cognition 
is key to understanding what makes human cognition unique and how 
to engineer it into model systems16. One recent study investigated how 
different brain areas encode many different tasks across the entire 
cortex17. This study revealed clustering of task representations in 
the cortex and which brain areas were selective to each task type. We 
build on that study using RSA to characterize how the topography 
of representations organize along cortical hierarchies and how the 
local representational properties of each brain region (such as its 
dimensionality) change across that cortical hierarchy. Explicitly quan-
tifying representational transformations across cortical hierarchies 
would provide insight into the computational principles underlying 
human-like cognitive processing.

Here, we investigated multitask representations across the corti-
cal hierarchy and how artificial neural network models (ANNs) can 
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Fig. 1 | Overview of analytic approaches to study the geometry and 
topography of multitask representations in fMRI data. a, Representational 
geometry of brain parcels is characterized by RSA (using cosine similarity) 
applied to individual-specific vertex activation patterns within each parcel4. 
Using individual-specific activation patterns ensures that fine-grained (voxel-
wise) representational geometries would not be lost through cross-participant 
averaging. This enables estimation of an RSM for each brain region using 
vertices within that region. b, Using each region’s RSM, we can characterize the 
topography of representations by measuring the RA (the similarity of regional 

RSMs) between all pairs of brain regions. c, We next asked how the dimensionality 
of representations changes across the sensory–motor hierarchy. An example 
(Ex) of a high-dimensional representation is one with a strong diagonal but weak 
off-diagonal. By contrast, a low-dimensional representation is one with a lack 
of structure in the RSM and uniform similarity in activation patterns between 
conditions. d, Given the empirical results, we identified the conditions by which 
similar hierarchical representations emerge in the internal layers of feedforward 
neural network models trained to produce sensory-to-motor transformations.
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Results
Analytic approach to studying multitask representations
RSA was central to our data analytic approach (Fig. 1)4. RSA approxi-
mates the representational geometry of a set of multivariate task 
activations by comparing the similarity of activation vectors across 
different conditions. By performing RSA on each brain region, we could 
produce representational similarity matrices (RSMs) for every brain 
region (Fig. 1a). We used the Glasser parcellation24, which provides an 
atlas of 360 cortical brain regions, to measure the RSMs for each corti-
cal region using the vertices (surface voxels) within each predefined 
region. Critically, RSMs were calculated for each individual, ensuring 
that fine-grained (vertex-wise) representational geometries would not 
be lost through cross-individual averaging of activations at the vertex 
level (Extended Data Fig. 9). These region-specific RSMs enabled us to 
perform a variety of new analyses, such as comparing RSMs of cortical 
areas (that is, the representational alignment (RA); Fig. 1b), quantify-
ing the representational dimensionality across cortical areas (Fig. 1c) 
and identifying the conditions by which computational models can 
reproduce brain-like representations (Fig. 1d).

A publicly available dataset with 26 cognitive tasks
Characterizing multitask representations across the cortex required 
a dataset with many tasks per individual. We used the publicly avail-
able multidomain task battery (MDTB) human fMRI dataset with 26 
cognitive tasks, comprising up to 45 unique task conditions18 (Fig. 2a). 
Data were collected across four sessions, enabling within-participant 
cross-validation analyses across task conditions (see Methods for a list 
of prior studies using this dataset).

Measuring the RA across brain areas
We used the multitask RSM of each cortical area to investigate how 
representations varied across the cortex (Fig. 3a). To characterize the 
regional variation of multitask representations, RA was computed as 
the cosine similarity between two regions’ RSMs (Fig. 3b). This pro-
duced a whole-cortex RA matrix (Fig. 3c). Intuitively, RA would be high 
between two visual regions that both have discriminable visual task rep-
resentations (that is, highly decodable) but non-discriminable motor 
task representations. One common way to characterize the large-scale 
organization of the cortex is through RSFC25,26. We found that the simi-
larity of multitask RA and RSFC was moderate (ρ = 0.37, P < 0.0001; 
Fig. 3d). This suggested that while the RA matrix appeared to recover 

overall aspects of intrinsic RSFC organization, the RA matrix offered 
unique information from RSFC. Critically, characterizing multitask RA 
in relation to the well-established RSFC organization literature12,25–27 
would clarify how the brain’s representational capacity emerges from 
its resting-state organization.

RA relates to the brain’s intrinsic organization
We next characterized RA in the context of the well-established 
RSFC. RSFC can be used to assign each cortical area to a functional 
network25,26,28, and this network organization strongly relates to cog-
nitive task activation patterns11. How does the alignment of task rep-
resentations correspond with the functional networks of the human 
brain29? To address this, we measured the segregation of RA in rela-
tion to the segregation of RSFC. Conceptually, segregation meas-
ures how clustered a network’s (for example, default mode network) 
representations/FC are in relation to other networks of the brain  
(Fig. 3g,h)30. Thus, if a visual region’s representations are highly unique 
to the visual network, then its segregation would be high. Unimodal 
regions had significantly higher RA segregation than transmodal 
regions (t358 = 12.99, P < 10 × 10–31; Extended Data Fig. 2d). Despite not 
observing a significant difference in segregation between RA and 
RSFC across the whole brain (t358 = −1.24, P = 0.22), RA had exagger-
ated differences in segregation by network; unimodal networks had 
higher segregation for RA than RSFC (t112 = −3.33, P = 0.001), and trans-
modal networks had lower segregation for RA (t244 = −4.24, P < 10 × 10–4;  
Fig. 3f,g,h). Thus, representations in unimodal regions were more 
isolated, while transmodal regions shared their representations more 
broadly with other networks and systems.

Prior work has revealed that the human brain’s functional hierar-
chy can be proxied through identifying topographic cortical gradients 
using task-free MRI12,31. Specifically, extracting the first principal com-
ponent of the RSFC matrix produces a unimodal–transmodal hierar-
chy12 (Fig. 3i), which is highly correlated with the cortical T1-weighted/
T2-weighted (T1w/T2w) map (an MRI-contrast correlate of intracorti-
cal myelin)32. RA segregation was strongly associated with the RSFC 
principal gradient (r = 0.39, Pnon-parametric < 0.001; Fig. 3i,j)12 and the T1w/
T2w myelin map (r = 0.36, Pnon-parametric < 0.001; Extended Data Fig. 2f,g). 
While prior studies have studied hierarchical organization in humans 
using resting-state, transcriptomic or structural imaging techniques, 
these findings situate multitask representational topography within 
the intrinsic hierarchical organization.
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Fig. 2 | Leveraging the MDTB dataset to investigate multitask 
representations. a, The MDTB dataset consists of 26 distinct tasks with up 
to 45 unique task conditions per individual and was previously made publicly 
available25. The tasks were split across two sets. Every individual performed 
each set of tasks twice across different fMRI sessions. (IAPS = International 
Affective Picture System; CPRO = Concrete Permuted Rule Operations; alt = 

alternatives). b, Task blocks were interleaved across each fMRI session. For each 
block, instructions were presented for 5 s, followed by a task that was performed 
continuously for 30 s until the subsequent block. c, Whole-cortex group-level 
activation maps for 12 of 26 cognitive tasks (see Extended Data Fig. 1 for all task 
activation maps); AU, arbitrary units.
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Hierarchical organization of representational dimensionality
Recent studies have investigated task representational dimensionality 
during task performance33,34. Note that representational dimensional-
ity refers to the dimensionality of the task space rather than the neural 
space. However, most prior studies evaluated the representational 
dimensionality of either a specific task (for example, perceptual task) 
or within a specific brain region, such as the prefrontal cortex34. Here, 
we evaluated the representational dimensionality across many tasks 
and across the entire cortex.

We measured the representational dimensionality by meas-
uring the participation ratio of the RSM for each cortical region  
(Fig. 4a)35–37. Intuitively, the participation ratio is a statistical estimate 
of dimensionality and is related to the flatness of the RSM’s eigenspec-
trum. An implication of this is that regions with low representational 
dimensionality have stereotyped task responses that are largely shared 
across many tasks (that is, task responses coexist in a low-dimensional 
linear subspace). We also estimated the multitask (45-way) decoding 
as a complementary measure of dimensionality because decoding has 
been previously used to estimate dimensionality34.

Representational dimensionality and the multitask decoding 
accuracy were highly correlated across cortical areas, indicating the 
reliability of these measures (r = 0.94, Pnon-parametric < 0.001; Fig. 4b,c). 
Next, we addressed whether representational dimensionality was 
related to intrinsic hierarchical organization. Indeed, representational 
dimensionality and multitask decoding were highly correlated with 
the RSFC principal gradient (r = 0.49, Pnon-parametric < 0.001) and T1w/

T2w myelin map (r = 0.41, Pnon-parametric < 0.001; Fig. 4d and Extended 
Data Fig. 3). This illustrated that like representational segregation, 
representational dimensionality was also higher in unimodal regions 
than in transmodal regions (t358 = 6.54, P < 10 × 10–9; Fig. 4d). These find-
ings are consistent with previous studies that found that higher-order 
association areas typically have relatively low decoding accuracies, 
even for tasks that heavily involve those regions38.

As control analyses, we tested for the effect of parcel size and num-
ber of task conditions. After conditioning on parcel size as a covariate 
using linear regression, the associations between representational 
dimensionality and hierarchy remained significant (Extended Data 
Fig. 3c). We tested for robustness to the number of task conditions 
by randomly sampling subsets of task conditions and found that the 
hierarchical differences in representational dimensionality were robust 
with at least 10 task conditions (Extended Data Fig. 4a–c).

Compression then expansion of task representations
We next mapped the axis of greatest RA variation, elucidating how repre-
sentations vary across the cortex. We performed a principal-component 
analysis (PCA) to extract the first principal gradient of corticocorti-
cal RA. In contrast to the unimodal–transmodal principal gradient 
exhibited from RSFC (Fig. 3i), RA’s principal gradient exhibited a 
sensory-to-motor gradient and explained 29% of variance in the RA 
matrix (Fig. 5a,b). This was more than two times the variance relative to 
the second RA principal component (13%). This analysis was corrobo-
rated using non-negative matrix factorization (Extended Data Fig. 10). 
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RSMs taken from visual, motor and prefrontal areas. RSMs consisted of 45 
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have greater segregation for RA than RSFC, and transmodal regions (n = 246) 
have less segregation for RA than RSFC. This was despite no difference in overall 
segregation between RA and RSFC. Data were analyzed by two-sided t-test 
(P < 10 × 10–34). i,j, The cortical topography of RA segregation is correlated with 
the RSFC principal gradient, a proxy of intrinsic hierarchy. Blue and red dots 
reflect transmodal/unimodal regions, respectively. Box plot bounds define 
the first and third quartiles of the distribution, box whiskers indicate the 95% 
confidence interval, and the center line indicates the median.
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This RA sensory-to-motor gradient was highly correlated with the sec-
ond principal component of RSFC that also reflects a sensory-to-motor 
cortical organization (r = 0.59, Pnon-parametric < 0.001; Fig. 5c). Thus, the 
axis of greatest RA variation places sensory and motor area representa-
tions on opposite ends (Fig. 5d).

To understand how representations transform from sensory to 
motor ends, we evaluated the representational dimensionality across 
the sensory-to-motor hierarchy. We fit several competing statistical 
models to evaluate how representational dimensionality (dependent 
variable) changed as a function of the sensory–motor gradient (inde-
pendent variable), including linear, quadratic and exponential decay 
models. Using the Akaike/Bayesian information criterion (Extended 
Data Fig. 5), a convex quadratic fit best explained representational 
dimensionality as a function of the sensory-to-motor hierarchy (Fig. 
5e). We corroborated this result using the RA principal gradient rather 

than the second RSFC sensory–motor gradient, illustrating the robust-
ness of this phenomenon (Fig. 5f). The quadratic dependence was 
robust to subsampling the task conditions (Extended Data Fig. 4d–f).  
This analysis revealed that representational dimensionality com-
pressed then expanded across the sensory-to-motor hierarchy.

To verify compression then expansion from sensory-to-motor 
systems, we grouped regions by cortical systems. Both sensory and 
motor systems had greater dimensionality than association regions 
(sensory versus association, t319 = 7.22, P < 10 × 10–11; motor versus asso-
ciation, t283 = 2.59, P = 0.01; Fig. 5g). To further establish compression 
then expansion along the RA hierarchy, we created 10 bins of brain 
regions sorted by the loadings of the RA principal gradient (Fig. 5h). 
We fitted a continuous piecewise regression model, varying the break-
point between the two line segments at every intermediary bin. We 
selected the model with highest R2, which resulted in the piecewise 
model with a breakpoint at bin 3 (Methods). We then tested the sta-
tistical significance for the coefficients of the piecewise regression 
(for a negative slope from bin 1 to 3 and a positive slope from bin 3 
to 10). Indeed, a negative slope from bin 1 to 3 (t7 = −12.51, P < 0.001) 
and a positive slope from bin 3 to 10 (two sided; t7 = 2.55, P = 0.038) 
confirmed the compression then expansion of dimensionality across 
the sensory-to-motor hierarchy.

Compression then expansion of task representations in ANNs
We next investigated the computational mechanisms that produced 
the compression then expansion of representational dimensionality 
observed in fMRI data. Interestingly, two recent ANN studies observed 
expansion then compression of representational dimensionality when 
trained on image recognition tasks20,21. Therefore, we first asked how 
the compression-then-expansion phenomena of representational 
dimensionality emerges in ANNs. We used multilayer, feedforward 
linear ANNs with tied weights to study how fMRI activations in visual 
areas were successively transformed into motor activations under 
different learning regimes (ANNs with untied weights are presented 
in Extended Data Fig. 7 and with other optimization parameters in 
Extended Data Fig. 8).

Prior research has shown that small alterations to weight initializa-
tion parameters can greatly impact the learned hidden representations 
in ANNs22,23. Specifically, those studies found that during a ‘rich’ training 
regime (in which network initializations had small weight variances), 
ANNs learned lower-dimensional and structured representations. By 
contrast, during a ‘lazy’ training regime (large variance weight ini-
tializations), task performance was achieved by randomly projecting 
input features into a high-dimensional embedding in hidden layers. 
Therefore, we examined representations as a function of the rich and 
lazy training regimen.

Using the sensory-to-motor RSFC gradient 2 (Fig. 5c), we selected 
two brain regions on opposite ends of this axis (that is, lowest and 
highest loadings). This resulted in a visual and a motor parcel (Fig. 6a). 
Note that these sensory and motor parcels had highly similar RSMs to 
primary visual cortex and primary motor cortex, respectively, sug-
gesting that the gradient-selected parcels were appropriate to model 
early sensory to late motor transformations in data (Extended Data 
Fig. 6a–c). We took the visual parcel’s fMRI activations of each of the 
45 task conditions (that is, a 45 task condition × vertex-wise activations 
input matrix) and trained an ANN with 10 hidden layers using weight 
initializations with different standard deviations to predict motor 
activations (Fig. 6b). We trained 20 random initializations for each 
weight initialization (ranging from 0.2 to 2.0 in increments of 0.2).

After ANN training, we measured the representational dimension-
ality of each ANN’s hidden layer. Rich training regimes (for example, 
weight initialization s.d. = 0.2; Methods) showed compression then 
expansion across layers, consistent with empirical data (Fig. 6c). Similar 
to the empirical data, we fit a second-order polynomial regression to 
model dimensionality as a function of layer depth. In the rich regime, in 
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particular for weight initializations starting at an s.d. of 0.2, the quad-
ratic fit was convex and had higher R2 values (Fig. 6d). Thus, rich regimes 
produced compression then expansion of hierarchical representations.

The rich training regime could produce a compression then expan-
sion of learned representations in ANNs, reproducing the empirical 
brain data and in contrast to what is typically found in task-optimized 
ANNs20,21. But do the compressed-then-expanded representations 
exhibit greater similarity to empirical brain representations? Hidden 
representations learned in the rich regime (that is, <1.0 s.d. weight 
initializations) were more similar to those found in empirical data 
(rich, cosine = 0.42; lazy, cosine = 0.37; rich versus lazy, t198 = 15.28, 
P < 10 × 10–34; Fig. 6e). We then partitioned brain parcels into 10 bins 
of 36 parcels and sorted them according to their loading relative to 
the sensory–motor RSFC gradient (Fig. 6g). We correlated the RSMs 
of each bin with each ANN layer according to depth (for example, 
similarity of RSMs for ANN layer i with fMRI bin i). The later 8/10 bins/
layers had higher similarity in the rich regime (for 8/10, false discovery 
rate (FDR)-corrected P value of 10−16). While the first two fMRI bins 
had greater correspondence with the lazy learning regime, these first 
two bins primarily consisted of visual areas. Empirically, visual areas 
contained high-dimensional representations. Because the lazy learn-
ing embeds input features in a high-dimensional space, the higher 
similarity of lazily trained ANNs with visual regions was unsurprising. 
Thus, with the exception of early visual areas, richly trained ANNs have 
greater correspondence with fMRI data in terms of both representa-
tional dimensionality and content.

Richly trained ANNs learn structured transformations
Having modeled the successive transformation of fMRI activations 
from visual to motor regions in feedforward ANNs, we evaluated the 
properties of ANNs that contributed to better correspondence with 

brain data. First, we characterized the structure of representations 
that emerged in ANNs trained under different learning regimes. This 
was done through a similar analytic strategy as in empirical data. For 
each layer, we computed its RSM using each of the 45 task activation 
patterns and computed the cosine similarity of that layer’s RSM with 
the RSMs from all other layers (Fig. 7a). This produced a layer-by-layer 
RA matrix (Fig. 7d). ANNs trained in the rich regime learned structured 
representations that were consistent with structured representations 
in data; adjacent layers had high RA to each other, but distal layers had 
low RA to each other (Fig. 7b–d). We quantified this by calculating 
the mean of the RA matrix for each weight initialization (Fig. 7e) and 
the dimensionality of the RA matrix (Fig. 7f,g). The higher (lazier) the 
weight initialization, the greater the overall RA across layers and the 
lower the dimensionality (rich versus lazy cosine difference = −0.12, 
t18 = −124.70, P < 10 × 10–28; rich versus lazy variance explained by the 
first principal component = −15.52%, t18 = −99.10, P < 10 × 10–26). In con-
trast to the rich training regime, the lazy regime had nearly no mean-
ingful transformations in the hidden layers for weight initializations, 
with s.d. > 1.2; outputs were generated from the readout weights only 
(Fig. 7d). The ANN’s internal representations were a direct byproduct 
of its learned (via training) connectivity structure. Analysis of the 
optimized network weights revealed that richly trained networks 
exhibited small-world network structure and low-dimensional con-
nectivity (Extended Data Fig. 6).

Transformational trajectories from visual to motor areas
To provide an intuition of the transformations in rich and lazy ANNs 
in the task-state space, we characterized the transformational trajec-
tories from visual to motor representations. This involved plotting 
ANN representations in a two-dimensional space. The y axis reflected 
the alignment (inner product) with visual (input) RSM, and the x axis 
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representational dimensionality against both the RSFC sensory–motor gradient 
(e) and RA principal gradient (f), finding that a second-order convex polynomial 
model was a better fit than a first-order polynomial model and an exponential 
decay model (Extended Data Fig. 5). This suggested that representational 
dimensionality compressed then expanded across the sensory–motor hierarchy. 

g, Same as in e and f but after grouping together sensory (visual and auditory 
network; n = 75), motor (somatomotor network; n = 39) and association (all other 
networks; n = 246) parcels according to network affiliation. Data were analyzed 
by two-sided, two-sample t-test with a Bonferroni correction. h, Same as in e 
and f but after placing regions into 10 bins (n = 36 each) sorted according to the 
RA hierarchy (that is, binning regions together with similar loadings). Using a 
continuous piecewise linear regression, a significant negative-then-positive 
slope best accounted for dimensionality, consistent with compression then 
expansion of dimensionality. Data were analyzed by two-sided t-test. Box plot 
bounds define the first and third quartiles of the distribution, box whiskers 
indicate the 95% confidence interval, and the center line indicates the median. 
Error bands reflect a 95% confidence interval in d–f; ***P < 0.0001; *P < 0.05.
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reflected the alignment with motor (output) RSM. While a linear 
transformation would map visual to motor representations directly  
(Fig. 8a), we hypothesized that compression then expansion would 
occur by first compressing representations along the visual axis and 
then expanding along the motor axis (Fig. 8a). This is in contrast to the 
alternative, where motor representations first expand with minimal 
loss of visual representations (Fig. 8a). In agreement with this theory, 
richly trained ANNs first compressed along the visual axis, followed 
by growth along the motor axis (Fig. 8b). This is consistent with the 
notion that higher-order brain areas (that is, similar to intermediate 
layers in an ANN) contain distinct representations from input (visual) 
and output (motor) representations, are low dimensional and integrate 
input and output representations. By contrast, lazy ANN representa-
tions maintained high similarity to visual input representations, with 
visual-to-motor representational transformations primarily imple-
mented in the readout weights.

Discussion
Using RSA-based techniques, we mapped the multitask representational 
organization of the human cortex. Representations in sensory and motor 
cortices were more isolated from the rest of the cortex yet had higher 
dimensionality. By contrast, representations in association regions were 
lower dimensional but were situated between sensory and motor repre-
sentations. This revealed a representational hierarchy that compressed 
then expanded from sensory to association to motor areas. To explore the 
computational mechanisms of hierarchical representations in the brain, 

we used feedforward ANNs to study how representations compressed 
then expanded from input to output. During a rich training regime, ANNs 
learned structured and hierarchical representations that (1) compressed 
then expanded representations and (2) had greater similarity to represen-
tations found in fMRI data. Further analysis of the ANN revealed that this 
training regime produced low-dimensional weights with a heavy-tailed 
distribution, consistent with empirical brain networks39. Together, these 
findings characterize the topographic organization of multitask repre-
sentations in the cortex and provide a framework for understanding how 
brain-like representations emerge in ANNs.

We combined multitask analyses with RSA. While RSA has been 
widely used since its original inception more than a decade ago4, appli-
cations of RSA have typically been limited to the sensory domain (that 
is, where the rows and columns of RSMs are sensory stimuli). The com-
bined approach of leveraging a multitask design with RSA provides a 
unique opportunity to investigate how different brain regions rep-
resent diverse task information. One recent study collected many 
tasks per participant and, by using individualized encoding models, 
identified clusters of tasks in a latent cognitive space and how task 
specialization emerged across the cortex17. Here, we expand on that 
study by explicitly quantifying the transformation of representations 
between cortical areas, investigating how these variations relate to 
hierarchical organization and addressing how the dimensionality of 
task representations changes across this hierarchy.

Our findings of cortical gradients in task representations adds to 
a growing literature identifying hierarchy as a fundamental principle 
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of cortical organization. Early seminal work using tract-tracing tech-
niques revealed hierarchical connectivity organization in the macaque 
visual cortex40. More recent work has shown that such hierarchical 
organization can be studied in humans in vivo with MRI and electro-
physiology. These studies have focused on identifying structural32, 
transcriptomic31, RSFC12 and intrinsic timescale signatures of hierar-
chical organization41,42. Most of these hierarchical descriptions used 
task-free MRI data, and here, we establish an overarching link that 
bridges multitask representations with fundamental hierarchical 

organization. Other studies that evaluate the role of connectivity 
organization43,44 and shared multitask dynamics45 have also identified 
key hub regions in the association cortex. This is consistent with our 
finding that association areas contain integrative representations 
that link the sensory and motor representations lying on opposing 
ends of the sensory-to-motor axis. Future studies can explore how 
specializations of the association cortex, in long-range anatomical 
connectivity and local microcircuitry, contribute to the formation of 
low-dimensional integrative representations.

Compute similarity of 
layer RSMs

Weight init.: 0.2

AN
N

 la
ye

r

ANN layer

Interlayer similarity

Weight init. Weight init.

RA, first component

ANN layer

Weight init.: 0.4 Weight init.: 0.6 Weight init.: 1.0 Weight init.: 1.2 Weight init.: 1.6

Empirical RA
sorted by hierarchy

Empirical RA
by hierarchical bin

C
osine

0.75

10

5

0

Av
er

ag
e 

co
si

ne

va
ria

nc
e

ex
pl

ai
ne

d

0.9

0.8

0.7

0.2 0.8 1.4 2.0

1.0

0.9

0.8

0.2 0.6 1.0 1.4 1.8

0 3 6 9 0 3 6 9
ANN layer

0 3 6 9
ANN layer

0 3 6 9
ANN layer

0 3 6 9
ANN layer

0 3 6 9

C
osine

C
osine

1.0

0.8

0.6

0.4

1.0

0.5

Component

Dimensionality of RA
C

um
ul

at
iv

e
va

ria
nc

e 
ex

pl
ai

ne
d

0.8

1.0 W
eight init.

2

2 3

1

1

0.50

0.25

0

Compute average
RSM per bin 
for fMRI data

H
idden layers

Se
ns

or
y 

→
 M

ot
or

Bi
ns

Bins
Sensory → Motor

b

d

a c

e f g

Fig. 7 | Analysis of the ANN revealed that richly trained ANNs learn diverse and 
structured representations consistent with empirical data. a, We computed 
the RA between all layers by computing the cosine similarity between the RSMs 
of each hidden layer. b,c, For comparison, we sorted the empirical fMRI RA by the 
RSFC sensory–motor (second) gradient (b) and downsampled it into 10 discrete 
bins for comparison with the ANN analysis (c). d, The RA for ANNs by layer across 
weight initializations. ANNs trained in the rich regime (for example, weight 
initializations of <1) learned differentiated and structured representations. 
By contrast, ANNs trained in the lazy regime largely produced impoverished 

representations that only transformed sensory representations in the final layer. 
e, The average cosine similarity of each RA matrix by weight initialization (n = 20 
per weight initialization). f, Cumulative variance explained plot of the first three 
components of the RA matrix under different weight initializations. g, Variance 
explained of only the first principal component of the RA matrix (n = 20), which 
captures RA dimensionality; the larger the variance explained, the lower the 
dimensionality. Box plot bounds define the first and third quartiles of the 
distribution, box whiskers indicate the 95% confidence interval, and the center 
line indicates the median.

a

Motor axis

Vi
su

al
 a

xi
s

Input layer RSM

Output layer
RSM

Expansion on motor axis without 
discarding visual representations
Simultaneous compression and 
expansion of visual and motor axes

Theory
b

Model

30 30

20 20

10
10

10

5

1020 20
Motor axis (AU) Motor axis (AU)

30

Vi
su

al
 a

xi
s 

(A
U

)

Vi
su

al
 a

xi
s 

(A
U

)

Layer

Rich transformations Lazy transformations

Transformation

from linear

readout weights  

Compression on visual axis first 
then expansion on motor axis

Fig. 8 | Trajectories of representational transformations from visual to motor 
content. a, A theory of how representations transform across layers/brain areas 
from visual to motor representations. Axes reflect the similarity (computed as 
the inner product) to the visual input region’s RSM (y axis) and the motor output 
region’s RSM (x axis). Hidden layer representations can then be plotted along 
these two dimensions by calculating the inner product between the sensory and 
motor RSMs. b, We plotted the ANN’s internal representations along these two 

dimensions and found that rich representations are consistent with compression 
first along the visual axis and then expansion along the motor axis. By contrast, 
lazy ANNs preserve visual representations in hidden layers until the final readout 
weights transform visual into motor representations. Note that the y and x axes 
are not necessarily orthogonal and are plotted as such for visualization purposes. 
Each dot in the scatter plots reflects a different ANN initialization and layer.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-022-01224-0

Compression then expansion of representations emerged across 
the sensory-to-motor hierarchy in brain data. Surprisingly, this con-
trasts with task-optimized ANNs that typically exhibit expansion then 
compression of representational dimensionality across hidden lay-
ers20,21. Algorithmically, representational expansion then compression 
in ANNs affords high task performance due to the projection of input 
features into a high-dimensional embedding in the hidden layers. 
These high-dimensional representations subsequently allow for easy 
selection of the few features that are useful for task performance. What 
might be the algorithmic purpose of the compression then expansion 
of representations observed in the human brain? Recent work at the 
intersection of machine learning and neuroscience found that, in 
contrast to projecting input features into a high-dimensional space, 
lower-dimensional factorized representations (that is, ‘abstract’ or 
‘disentangled’) may be useful for generalization because they can easily 
be recycled in novel contexts46–48. Moreover, these lower-dimensional 
factorized representations can be learned by ANNs through a rich train-
ing regime47. Here, we expanded on this prior work by (1) leveraging a 
multitask dataset to demonstrate the generality of these principles 
(rather than manipulating distinct context representations within a 
single task paradigm) and (2) revealing the organization of representa-
tion transformations across the cortex. Although our findings suggest 
that the low-dimensional association cortex representations are shared 
across multiple tasks (which likely aid in out-of-task generalization), the 
current dataset is unable to evaluate how shared components are used 
to generalize to novel tasks. This is due to the lack of systematic factori-
zation of task components in this multitask setting, which is required 
to test whether factorized components can be compositionally reused. 
Therefore, it will be important for future studies to provide a unified 
understanding of the contribution of low-dimensional representations 
for task generalization performance49.

Our computational modeling results provide a parsimonious frame-
work to study representational transformations in relation to empirical 
data. There are multiple directions in modeling and analytics that future 
studies can explore. First, we used a simple feedforward ANN, moti-
vated by our findings of a dominant sensory-to-motor gradient. Future 
models can examine the impact of more complex and recurrent ANN 
architectures of internal representations50–52. We found that represen-
tations depended strongly on the training regime, which we controlled 
by weight initialization following prior literature22,23. Future modeling 
should explore alternative training methods for ANNs to examine how 
they alter the similarity to brain representations. Finally, future studies 
should examine the metrics used to quantify the similarity between 
empirical and model representations. For instance, inherent constraints 
on RSMs can be used to define alternative measures of RA53,54. Therefore, 
it will be important for future work to explore the space of biologically 
relevant strategies that produce feature-rich hierarchical representa-
tions in models that can be quantitatively related to neural datasets.

In conclusion, we characterized the multitask representational 
geometry and topography across the human cortical hierarchy and 
provide insight into the mechanisms that produce similar representa-
tions in ANNs. Overall, analysis of the task representational hierarchy 
revealed a sensory-to-motor gradient that compressed then expanded 
task representations. Subsequent modeling of these task activations 
in ANNs revealed that a rich training regime can reproduce representa-
tions that are consistent with brain data. This finding provides a frame-
work to explore how to build ANNs that learn task representations in a 
brain-like manner. We expect these findings to spur new investigations 
into how the study of multitask representations in the brain can inform 
new models of multitask performance in machine learning models.
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Methods
MDTB dataset
Portions of this section are paraphrased from the Methods section of 
the original dataset18. We used the publicly available MDTB dataset18. 
Prior studies with this dataset investigated the topographic and func-
tional boundaries of the human cerebellum18 and the validity of cortical 
parcellations (or brain atlases) derived from either resting-state or task 
fMRI55. The present study used this dataset to investigate a distinct 
topic: the structure and organization of multitask representational 
transformations across cortical hierarchies.

The MDTB dataset contains task fMRI data for 24 individuals col-
lected at Western University (16 females and 8 males; mean age = 23.8 
years, s.d. = 2.6; all individuals were right-handed; see ref. 18 for exclu-
sion criteria). All participants gave informed consent under an experi-
mental protocol approved by the institutional review board at Western 
University, where the dataset was originally collected. Briefly, the 
MDTB dataset contains 26 unique cognitive tasks with up to 45 dif-
ferent task conditions per participant. Participants first scanned all 
tasks in set A and returned for a second session to perform tasks in 
set B (Fig. 2a). Each task set session consisted of two imaging runs. 
Half of the individuals had sessions separated by 2–3 weeks, while 
the other half had sessions separated by 1 year. Of the 24 individuals, 
a separate resting-state fMRI scan was collected for 18 participants. 
Resting-state FC analyses presented in Fig. 3 were performed using 
this subset of participants.

A large battery of tasks was selected to broadly recruit cognitive 
processes from many functional domains (Fig. 2a). Set A consisted 
of cognitive, motor, affective and social tasks. Set B contained eight 
tasks that were also included in set A (for example, theory of mind and 
motor sequence tasks) and nine unique tasks. Both sets contained 17 
tasks each. Additional details regarding the experimental tasks and 
conditions have been previously reported (https://static-content.
springer.com/esm/art%3A10.1038%2Fs41593-019-0436-x/MediaOb-
jects/41593_2019_436_MOESM1_ESM.pdf)18.

Tasks were performed once per imaging session for 35-s blocks. 
Task blocks began with a 5-s instruction screen followed by 30 s of 
continuous task performance (Fig. 2b). While most tasks consisted of 
10–15 trials per block, the number of trials per task ranged from 1 to 30 
(for example, go/no-go task versus movie watching). Eleven of the 26 
tasks were passive, meaning no behavioral responses were required (for 
example, movie watching). For the remaining tasks, responses were 
made with left, right or both hands using a four-button box. Responses 
were made with either index or middle fingers of the assigned hand(s). 
Performing all tasks within a single imaging run for each participant 
ensured a common baseline between tasks, enabling fine-grained, 
voxel-wise multitask analyses.

fMRI preprocessing
Resting-state and task-state fMRI data were minimally preprocessed 
using the Human Connectome Project preprocessing pipeline within 
the Quantitative Neuroimaging Environment and Toolbox (QuNex, 
version 0.61.17)56,57. The Human Connectome Project preprocessing 
pipeline consisted of anatomical reconstruction and segmentation, 
echo-planar imaging (EPI) reconstruction and segmentation, spatial 
normalization to the MNI152 template and motion correction. Addi-
tional nuisance regression was performed on the minimally preproc-
essed time series. Consistent with previous reports58, this included 
six motion parameters, their derivatives and the quadratics of those 
parameters (24 motion regressors in total). We also removed the mean 
physiological time series extracted from the white matter and ventricle 
voxels. We also included the quadratic, derivatives and the derivatives 
of the quadratic time series of each of the white matter and ventricle 
time series (eight physiological nuisance signals). This amounted to 32 
nuisance parameters in total and was a nuisance regression model that 
was previously benchmarked59. In addition to nuisance regressors, task 

fMRI data were also modeled with task regressors to extract activation 
estimates described below.

fMRI task activation estimation
We performed a single-individual task general linear model (GLM) 
analysis on fMRI task data to estimate vertex-wise surface activations 
for each task condition on the Connectivity Informatics Technology 
Initiative file format (CIFTI) grayordinate space60,61. We modeled a 
separate regressor for every trial within each imaging run, similar 
to a beta series model61. The instruction period for each task was not 
included in the task regressors. This enabled the estimation of specific 
task conditions within each task block (for example, congruent versus 
incongruent conditions for the Stroop task). Each regressor (trial) 
was modeled as a boxcar function from the onset to the offset of the 
trial (0 s indicates off and 1 s indicates on) and then convolved with 
the Statistical Parametric Mapping (SPM) canonical hemodynamic 
response function to account for hemodynamic lags62. Activations 
for a task condition were then obtained by averaging the activation 
beta coefficients across trials within each imaging run, resulting in one 
task condition activation per run. Task GLMs were performed using 
the LinearRegression function within scikit-learn (version 0.23.2) in 
Python (version 3.8.5).

RSA and RA
We performed a split-half, cross-validated RSA to characterize the 
geometry of task representations across the cortex4. RSA was per-
formed for each parcel in the multimodal (structural, resting-state 
and task-based MRI) Glasser et al.24 atlas using vertices within each 
parcel24. We specifically chose this parcellation due to improved 
delineation of somatotopic and visuotopic areal organization that 
are not accounted for in atlases defined solely on resting-state fMRI63. 
In particular, the specific features that constituted an improved 
delineation in the Glasser parcellation (in contrast to other purely 
data-driven approaches) was the use of prior knowledge (for exam-
ple, previously published retinotopic maps64) to guide the division 
of areal/parcel boundaries. Critically, RSA was performed at the 
participant level to ensure that fine-grained, voxel-wise representa-
tions were participant specific and that activations would not be 
averaged across participants. Group averaging was computed after 
RSMs were constructed for each participant at every parcel. We used 
all task conditions, resulting in a 45 × 45 RSM. We used cosine similar-
ity to measure the distances between task activations. Despite many 
alternative metrics65,66, we specifically chose the cosine similarity 
because it also takes into account the overall mean magnitude of 
activation across a set of vertices (in contrast to Pearson correlation). 
Cross-validation was achieved by measuring the cosine similarity of 
activation patterns of the first and second imaging sessions (that is, a 
split-half cross-validation). This was possible because all tasks (in set 
A and B) were performed in two separate imaging runs. This ensured 
a non-trivial diagonal element (that is, not equal to 1), which revealed 
the test–retest reliability (or similarity) of the activation patterns of 
the same task condition.

Interregional RA was calculated by measuring the cosine similarity 
of the upper triangle elements (including the diagonal) of two region’s 
RSMs. Related measures have also been previously introduced under 
the term ‘representational connectivity’4,53,67.

Network segregation
Network segregation for RSFC and multitask RA was measured as 
the difference between within-network and between-network FC/RA 
divided by within-network FC/RA30. Networks were defined using a 
previously published whole-brain resting-state network partition28. 
Networks were composed of a non-overlapping set of parcels (or brain 
regions). Parcels are a collection of non-overlapping vertices. Network 
segregation30 was calculated for each region separately using either 
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the RA or FC matrix. Specifically, the segregation Sregion of a region was 
calculated as

Sregion =
Xwithin − Xbetween

Xwithin
,

where Xwithin is the within-network FC/RA for the region of interest, and 
Xbetween is the out-of-network FC/RA.

Representational dimensionality and multitask decoding. Repre-
sentational dimensionality was measured as the participation ratio 
of the multitask RSM. Representational dimensionality refers to the 
dimensionality of the task space rather than the neural space. That is, 
feature dimensions are defined by task conditions rather than as voxels/
neurons. The participation ratio was calculated as

dimX =
(∑m

i=1 λi)
2

∑m
i=1 λ

2
i

,

where dimX corresponds to the representational dimensionality of 
region X, and λi corresponds to the eigenvalues of the RSM of region X 
with m eigenvalues. The flatter the eigenspectrum of region X’s RSM, 
the higher the dimensionality. An alternative approach to intuiting this 
measure is that the dimensionality of task RSMs is inversely related 
to the amount of variance explained by the first few eigenvectors; 
the higher the dimensionality, the more eigenvectors are required to 
explain the same amount of variance. To complement representational 
dimensionality, we also measured the multitask decodability (45-way 
classification) of each region using a minimum-distance classifier. 
We used the cosine angle as our measure of distance and split-half 
cross-validation. Thus, a successful classification indicated that the 
diagonal element of a region’s cross-validated RSM was greater (that 
is, smallest distance) than all other off-diagonal elements for a given 
row (Fig. 4a). We performed additional control analyses to account for 
parcel size (that is, the number of vertices) when calculating represen-
tational dimensionality and multitask decodability. This was performed 
by conditioning on (regressing out) the number of vertices from each 
measure using linear regression (regression was performed across 
parcels). We then recalculated the correlation across brain maps (for 
example, myelin map versus representational dimensionality) using 
the residual values (Extended Data Fig. 3b,c).

Gradient analysis
Cortical gradients were calculated using a PCA on parcellated data. Fol-
lowing prior work12, resting-state FC gradients were extracted by apply-
ing PCA on the cortical FC matrix. For RA gradients, PCA was applied on 
the cortical RA matrix. This means that the covariance matrices of FC 
and RA were first calculated, and then the eigenvectors of those matrices 
were extracted. One intuitive way to think about elements in the cov(RA) 
or cov(RSFC) matrix is to ask, do two regions have similar patterns of RA 
(or FC/correlations) as the rest of cortex? If they have similar patterns of 
RA/FC, then those two regions would have similar loadings. Consistent 
with previous studies12, matrices were thresholded to include only the 
top 20% of values before extracting gradients. All correlation-based 
statistical tests involving gradients (that is, spatial correlations across 
the cortex) were performed using spatial autocorrelation-preserving 
permutation tests that generated random surrogate brain maps68. 
We used the BrainSMASH toolbox to generate 1,000 random surro-
gate brain maps for each cortical map of interest, and non-parametric  
P values were calculated from the null distribution. Therefore, the lowest 
precision non-parametric P value we obtained was 0.001.

Testing for compression then expansion in empirical data
Assessing compression then expansion in empirical data involved 
fitting representational dimensionality to sensory–motor hierarchy 

loadings using regression models (Fig. 5e,f and Extended Data Fig. 5). 
We used RSFC sensory–motor gradient 2 loadings (x variable) as the 
regressor to predict the representational dimensionality of each parcel 
(y variable). For model adjudication, we used used several competing 
regression models, including

Linearmodel ∶ y = β0 + β1x + ϵ

Quadraticmodel ∶ y = β0 + β1x + β2x2 + ϵ

Exponential decaymodel ∶ y (t) = N0e−λt + ϵ

where βi was the fitted coefficient term, and ϵ was the residual error 
term. For the second-order quadratic model, a positive second-order 
coefficient indicated a convex quadratic. Selection of the model was 
based on the lowest Akaike information criterion and Bayesian informa-
tion criterion (Extended Data Fig. 5).

To further verify compression then expansion across the sensory–
motor hierarchy, we binned together groups of 10 bins of 36 parcels 
according to their RA principal gradient loading (Fig. 5a). To establish 
compression then expansion along this gradient, we fit a piecewise 
linear model with the functional form

y = β0 + β1x1 + β2x2 + ϵ.

We trained a piecewise linear model for every possible breakpoint 
(that is, where x1 < i and x2 > i for every bin i between 1 and 10; eight pos-
sible models). Note that x1 represented values for x < i and 0 otherwise, 
and x2 represented values for x > i and 0 otherwise. After identifying 
the model with the greatest fit evaluated using R2, which turned out 
to be the model with the breakpoint at i = 3, we tested the statistical 
significance for the beta coefficients β1 and β2, with the hypothesis 
that they should be negative and positive, respectively. Negative and 
positive slopes for β1 and β2, respectively, would reflect a compression 
of representational dimensionality from input to the breakpoint and 
then an expansion from the breakpoint to the output.

ANN modeling and training
We modeled the transformation from visual fMRI activations to 
motor activations using a linear feedforward ANN. This enabled 
the characterization of the transformation as a sequence of linear 
transformations. fMRI activations were selected based on lying on 
opposite ends of the RSFC sensorimotor gradient (that is, region 
with the lowest/highest loadings). Input activations were normalized 
across vertices before training. Inputs and outputs corresponded to 
the vertex-level fMRI task activations for each parcel. We used the 
RSFC sensorimotor gradient rather than the task-based RA gradient 
to avoid any potential confounds of selecting activations from the 
same task data. The input and output parcels corresponded to parcels 
338 and 235 in the Glasser et al.24 atlas, respectively. We built the ANN 
with 10 hidden layers with tied weights (500 units per layer), and the 
ANN was defined by the equations

H1 = XWin + bin

Hi = Hi−1Whid + bhid

Y = HnWout + bout + ϵ

where X was the input fMRI activation from the visual parcel, Win 
mapped vertex activations into the hidden unit space, bin was the input 
bias, Hi was the hidden unit activations for layer i up to n (that is, 10), 
Whid and bhid were the weights and biases for the hidden layers, Y was 
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the predicted motor fMRI activation in the motor parcel, and ϵ was the 
residual error term. Using tied weights and a linear model reduced the 
number of free parameters in the model, thereby constraining the 
solutions and simplifying the model for subsequent analysis. Using 
tied weights also increased computational efficiency during training. 
However, we also ran the model without tied weights (where Whid and 
bhid were distinct for each layer), yielding computationally similar 
results (Extended Data Fig. 7).

ANN hidden layer weights were initialized from a Xavier normal 
distribution, with mean 0 and a scaling factor ranging from 0.2 to 2.0 
in increments of 0.2 (ref. 69). Biases were initialized to be 0. Training was 
implemented using a mean squared error cost function and the Adam 
optimizer with an initial learning rate of 0.0001 (ref. 70). Training was 
stopped once the mean squared error fell below a threshold of 0.2. We 
also replicated these core mode results using a standard stochastic 
gradient descent optimizer with a learning rate of 0.01 (Extended Data 
Fig. 8). Note that smaller learning rates resulted in intractable training 
times using stochastic gradient descent.

We fit ANNs for each participant’s activations separately. For every 
participant, we trained 20 networks with different random initializa-
tions. For each ANN analysis, statistics and network properties (for 
example, dimensionality, weight norms and so on) were averaged 
across participants, and statistical tests were performed on the 20 
random initializations.

We note that while there is no strict definition of rich versus lazy 
training, there are several factors that are good proxy measurements of 
an ANN’s training regime. One such proxy is that training cost/time-rich 
training is far more computationally costly than lazy training47. Empiri-
cally, we observe that rich training has weight initializations that are 
smaller than the default initialization (s.d. = 1.0), while computationally 
cheap lazy training includes initializations that are greater than the 
default. Nevertheless, these definitions can change with ANN archi-
tectures because weight initializations can impact the vanishing and 
exploding gradient issue in ANN training.

All models were built using PyTorch version 1.4.0 and Python 
version 3.8.5.

ANN analysis
Trained ANNs were subject to analysis to characterize both the learned 
intermediate representations and weight distribution properties. 
Model RSMs were generated by propagating participant-level task 
activations through the hidden layers. Cross-validated RSMs were 
constructed and analyzed identically to fMRI data (for example, cosine 
similarity and then participation ratio to estimate its dimensionality; 
Fig. 6c). As in our fMRI analysis, we used a split-half cross-validation 
where we compared task activations between the first and second 
imaging sessions of each task set. We fitted the dimensionality across 
ANN layer depth using a second-order polynomial regression to assess 
how representational dimensionality changed throughout the network 
(Fig. 6d). Positive and negative second-order coefficients indicated 
convex and concave quadratics, respectively.

We compared the representational geometries produced by the 
ANN with the representational geometries found in empirical fMRI 
data. To directly compare ANN and empirical RSMs, we partitioned the 
cortex into 10 bins containing 36 parcels each (Fig. 6g). Cortical bins 
and their ordering were determined by the RSFC sensory–motor gradi-
ent, where parcels with similar loadings were placed in adjacent bins 
(Fig. 5a). We computed the cosine similarity of each region’s RSM with 
each ANN layer’s RSM. To evaluate the correspondence between rep-
resentations in each cortical bin and each ANN layer, we averaged the 
cosine values across parcels within each bin (Fig. 6f). This was done for 
ANNs trained under the rich regime (weight initializations less than 1)  
and the lazy regime (weight initializations greater than 1).

We assessed the interlayer RA within the ANN for different weight 
initializations (Fig. 7a), which is similar to interregion RA measured in 

fMRI data (Fig. 3c). This was defined as the cosine similarity between 
RSMs between pairs of ANN layers (Fig. 7a). We also analyzed the 
properties of the trained and initialized ANN weights. This included 
calculation of the Frobenius norm, Fisher kurtosis and singular value 
decomposition of the weight matrices under different weight ini-
tializations. Dimensionality of the ANN’s weights was performed by 
measuring the participation ratio of the singular values. All statistical 
analyses were performed in Python version 3.8.5 using the NumPy 
(version 1.18.5) and SciPy (version 1.6.0) packages.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data in this study have been made publicly available on OpenNeuro 
by King and colleagues (accession number ds002105 (ref. 18)).

Code availability
All code related to this study is publicly available on GitHub (https://
github.com/murraylab/multitaskhierarchy). Analyses and models were 
implemented using Python (version 3.8.5). Cortical visualizations were 
implemented using workbench (version 1.5.0).
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Extended Data Fig. 1 | Whole-cortex group activation maps for all 26 cognitive tasks. Activation maps reflect the GLM beta values and were averaged across 
conditions within each task.
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Extended Data Fig. 2 | Comparing segregation of whole-cortex RSFC and 
RA between unimodal-transmodal areas and functional networks. a, b) 
Force-directed graphs comparing RSFC and RA community structure (color-
coated by functional networks). c) Segregation of RSFC and d) RA whole-cortex 
matrices (n = 144 unimodal, n = 246 transmodal). e) The direct comparison of 
differences in segregation between RA and RSFC for unimodal and transmodal 
regions (same as Fig. 3h). (Panels c-e are two-sided t-tests.) f, g) Association of 
regional RA segregation with the cortical myelin map (T1w/T2w structural map). 
h) Segregation of RSFC by functional networks. i) Segregation of RA by functional 
networks. Note that for both RA and RSFC, sensorimotor networks have higher 

segregation than association networks. Boxplot bounds define the 1st and 
3rd quartiles of the distribution, box whiskers the 95% confidence interval, 
and the center line indicates the median. Network key: VIS1 = Visual 1 (n = 6); 
VIS2 = Visual 2 (n = 54); SMN = Somatomotor (n = 39); VMM = Ventral multimodal 
(n = 6); AUD = Auditory (n = 15); DAN = Dorsal attention (n = 23); DMN = Default 
mode (n = 77); CON = Cingulo-opercular (n = 56); PMM = Posterior multimodal 
(n = 7); FPN = Frontoparietal (n = 50); LAN = Language (n = 23); ORA = Orbital-
affective (n = 4). Colors of each network correspond to colors in panel Fig. 3e. 
(***p = <0.0001, two-sided t-test.).
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Extended Data Fig. 3 | Representational dimensionality and multi-task 
decoding produce similar associations with intrinsic hierarchy, even after 
controlling for parcel size. a) Correlation of multi-task decoding with the 
principal RSFC gradient and myelin map across regions. b) Parcel size (number 
of vertices within a brain region) and representational dimensionality were 
positively correlated (r = 0.45, non-parametric p < 0.001). However, after 
accounting for parcel size (that is, the number of vertices within each parcel) as 

a covariate (via linear regression), a strong association between decodability 
and intrinsic hierarchy was maintained. c) Same analysis as in panel b, but using 
representational dimensionality rather than decodability. All correlations in 
a, b, and c resulted in a non-parametric p < 0.001 using surrogate brain maps 
that accounted for spatial autocorrelation68. This suggests that the association 
between representational dimensionality and intrinsic hierarchy is independent 
of parcel size. Error bands reflect a 95% confidence interval.
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Extended Data Fig. 4 | Random subsamples of the task set show similar 
association with both the unimodal-transmodal and the sensorimotor 
hierarchy. a) The association between representational dimensionality and the 
principal RSFC gradient (unimodal-transmodal hierarchy) with the entire task 
set. b) We randomly sub-sampled (without replacement) tasks to downsize the 
RSMs of all parcels, and then measured the correlation between representational 
dimensionality and RSFC gradient 1. For each sub-sample size, we repeatedly 
chose (that is, 45 choose n) 20 times to estimate the robustness of the association 
with arbitrary selection of tasks. The association increased and stabilized as we 
increased the number of tasks (n = 20). c) Same as in b, but using the myelin map. 
d) The compression-then-expansion fit of representational dimensionality and 

the sensorimotor (RSFC gradient 2) hierarchy. e) We estimated the 2nd-order 
polynomial fit for randomly sub-sampled tasks, and assessed the coefficient 
of 2nd-order polynomial fit. The higher (and more positive) the parameter, the 
more convex the compression-then-expansion was. Increased compression-
then-expansion as the number of randomly sampled tasks were included (n = 20 
random subsamples). f ) Same procedure as e, but measuring the R-squared of 
the polynomial fit rather than the 2nd-order coefficient term. Boxplot bounds 
define the 1st and 3rd quartiles of the distribution, box whiskers the 95% 
confidence interval, and the center line indicates the median. Error bands reflect 
a 95% confidence interval in panels a and d.
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Extended Data Fig. 5 | Establishing compression-then-expansion of 
representational dimensionality across the sensory-motor hierarchy via 
model adjudication. a) We fit the representational dimensionality of parcels 
across the sensory-motor RSFC gradient using three competing models: 
Quadratic (2nd-order polynomial), linear, and an exponential decay model, 
where separate models were fit for loadings less than and greater than 0. b) The 
Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) 

for all models, which takes into account the maximum likelihood of each model 
while penalizing the models with more free parameters. Quadratic models had 
the smallest values for both AIC and BIC. c,d) Same as panels a and b, but using 
the RA principal gradient. Quadratic models were defined as 
y = β0 + β1x+ β2x2 + ϵ. Linear models were defined as y = β0 + β1x+ ϵ. 

Exponential decay models were defined as y (t) = N0e−λt + ϵ.
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Extended Data Fig. 6 | Supplemental information on ANN modeling during 
rich and lazy training regimes. The similarity between a) the RSMs for V1 and 
the gradient-identified input parcel for model construction and b) the RSMs for 
M1 and the gradient-selected motor output parcel. Overall, the representational 
geometries were highly similar between V1 and the input RSM, and M1 and the 
motor output RSM. d) The training cost (that is, number of training epochs 
required) for different weight initializations. Visualization of RSMs for example 
ANNs (one initialization each) for e) rich, f ) intermediate (that is, initialization 
SD = 1.0), and g) lazy training regimes. h-j) Characterizing the structural network 
mechanisms that give rise to differences in representational structure across 
learning regimes in the ANN. h) Initialized and trained norm of ANN weights as 
a function of weight initialization. In line with previous work47, the Frobenius 
norm of the trained ANN, which reflects the variability of the hidden weight 
projections, were significantly smaller in the rich training regime. i) The kurtosis 
of the degree distribution during initialization and after training. The kurtosis 
of the weight distribution measures the tailedness of the weight distribution. 
Kurtosis (in terms of connectivity weights) reflects the small-worldness of a 

network, a well-documented feature in empirical brain networks39. The kurtosis 
of richly trained networks was higher than in lazily trained networks, producing 
a heavy-tailed weight distribution. j) We characterized the dimensionality of the 
ANN weights to gain insight into the successive representational transformations 
in the ANN across 20 initializations per weight distribution (n = 20). Weight 
dimensionality was computed by performing a singular value decomposition 
(SVD) on the weights, and then calculating the participation ratio of the singular 
values. The dimensionality of the learned weights directly constrains the 
representations the ANNs produce. Low-dimensionality of the connectivity 
weights likely aids in cross-task generalization, since low-dimensional 
connections force the network to extract shared components across tasks. 
Weight dimensionality was lower in rich training regimes. These findings suggest 
that across layers, richly trained ANNs with low-dimensional and low-variability 
weights collectively produced modular patterns of representations across layers, 
consistent with empirical data. Boxplot bounds define the 1st and 3rd quartiles 
of the distribution, box whiskers the 95% confidence interval, and the center line 
indicates the median.
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Extended Data Fig. 7 | Training an ANN with untied weights results in 
qualitatively similar results. We trained a 5-layer ANN with untied weights 
to produce qualitatively similar results to the ANN in the main manuscript. 
We reduced the number of layers from 10 to 5 and the number of hidden units 
from 500 to 250 for computational efficiency. (An ANN with untied weights has 
significantly greater parameters than one with tied weights.) a) Representational 
dimensionality of ANN layers for different weight initializations. b) ANN 
architecture. c) Richly trained ANNs had significantly higher similarity 
with representations found in empirical data relative to lazily trained ANNs 
(n = 20). d) Similarity to fMRI data by layer (rich minus lazy ANNs) (n = 20). e) 
Representational alignment of each ANN’s layer (cosine similarity between 

RSMs). f ) Overall similarity of representations across ANN layers. Greater 
representational dissimilarity (across layers) is found in richly trained ANNs 
(n = 20). g) Variance explained of the first principal component for each of the 
RA matrices in panel e (n = 20). h) Frobenius norm of the weight distribution 
across initializations. i) The kurtosis (tailedness) of the weight distribution across 
layers under different weight initialization schemes. j) SVD of ANN weights. k) 
Dimensionality (participation ratio) of the weights for different initializations 
(n = 20). Richer training regimes produce low-dimensional weights. Boxplot 
bounds define the 1st and 3rd quartiles of the distribution, box whiskers the 95% 
confidence interval, and the center line indicates the median. (***p < 0.0001, 
two-sided t-test.).
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Extended Data Fig. 8 | Using standard stochastic gradient descent (without 
momentum/weight decay) with tied weights also produces qualitatively 
similar results. To explore the impact of model optimization and network size 
on the learned representations in ANNs, we trained a 5-layer ANN to produce 
qualitatively similar results to the ANN in the main manuscript (Figs. 6, 7). 
We reduced the number of layers from 10 to 5 for computational efficiency. 
Instead of using the Adam optimizer (with a learning rate of 0.0001), we used 
standard stochastic gradient descent with a learning rate of 0.01. (Note that 
smaller learning rates were highly computationally intractable for learning in 
the rich training regime.) We did not include model initializations with SD > 1.4 
due to exploding gradients. a) Representational dimensionality of ANN layers 
for different weight initializations. b) ANN architecture. c) Richly trained ANNs 

had significantly higher similarity with representations found in empirical data 
relative to lazily trained ANNs (rich>1.0, lazy<1.0) (n = 20). d) Similarity to fMRI 
data by layer (rich minus lazy ANNs) (n = 20). e) Representational alignment 
of each ANN’s layer (cosine similarity between RSMs). f ) Overall similarity of 
representations across ANN layers (n = 20). Greater representational dissimilarity 
(across layers) is found in richly trained ANNs. g) Cumulative variance explained 
of the first three principal components for each of the RA matrices in panel e. 
h) Dimensionality (participation ratio) of the learned connectivity weights for 
different initializations (n = 20). i) Average training cost by weight initialization. 
Boxplot bounds define the 1st and 3rd quartiles of the distribution, box 
whiskers the 95% confidence interval, and the center line indicates the median. 
(**p < 0.001, two-sided t-test.).
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Extended Data Fig. 9 | The importance of within-subject analyses to capture 
fine-grained representational patterns. a) Representational dimensionality 
across the cortical surface when computing dimensionality using the group-
averaged RSM (rather than subject-specific RSM). b) We computed the 
correlation between representational dimensionality with two proxies of the 
unimodal-transmodal hierarchy: RSFC principal gradient and the myelin map 
(T1w/T2w contrast). We find that when calculating dimensionality from RSMs 
derived from group-level activation averages, the association with the unimodal-
transmodal hierarchy is significantly reduced. c) We subsequently measured 
dimensionality across the sensory-association-motor systems, finding that in 

contrast to within-subject estimates of representational dimensionality, we no 
longer observed the dimensionality compression from sensory to association 
systems in group-derived maps (sensory, n = 75; association, n = 246; motor, 
n = 39). d) Representational dimensionality measured using individual RSMs. 
(Same as in Fig. 4b, for visual comparison.) e) Dimensionality across the sensory-
association-motor hierarchy using dimensionality computed from individual 
RSMs (same as in Fig. 5g, for visual comparison). Boxplot bounds define the 1st 
and 3rd quartiles of the distribution, box whiskers the 95% confidence interval, 
and the center line indicates the median. (***p < 0.0001, *p < 0.05, two-sided 
t-test.).
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Extended Data Fig. 10 | Corroborating evidence of the sensory-association- 
motor axis of hierarchical organization extracted using non-negative matrix 
factorization (NMF). This revealed that the sensory-to-motor hierarchy was 
robust to different matrix decomposition algorithms. a) The first component 

extracted using PCA and b) NMF. c) Correlation between the first components 
extracted with PCA and NMF. d) Correlation of RA gradient 1 (NMF) with the RSFC 
sensorimotor hierarchy (RSFC gradient 2).
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Data were collected from a previous publication (King et al. 2019, Nat. Neurosci). No software was used for data collection in this study.

Data analysis QuNex (version 0.61.17) was used to preprocess the raw data. Workbench (version 1.5.0) was used to visualize cortical maps. Custom python 

code (version 3.8.5) was used for analysis, and will be made publicly available prior to publication. We used NumPy (version 1.18.5) and SciPy 

(version 1.6.0).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data in this study has been made publicly available on OpenNeuro by King and colleagues (accession number: ds002105). (URL: https://openneuro.org/datasets/ 

ds002105/)
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We report using biological sex, as reported in the original data resource article (King et al., 2019, Nature Neuroscience). 

Population characteristics From the original Data Resource article (King et al., 2019, Nature Neuroscience): "The final sample consisted of 24 healthy, 

right-handed individuals (16 females, 8 males; mean age=23.8 years old, SD=2.6) with no self-reported history of neurological 

or psychiatric illness."

Recruitment From the original Data Resource article (King et al., 2019, Nature Neuroscience): "Undergraduate and graduate students 

were recruited (via posters) from the larger student body at Western University. Thus, our sample was biased towards 

relatively high-functioning, healthy and young individuals. While we don't expect cerebellar organization to be dramatically 

different in this group, caution needs to be exercised when generalizing the results to the general population."

Ethics oversight From the original Data Resource article (King et al., 2019, Nature Neuroscience): "The Ethics committee at Western 

University approved all experimental protocols (Protocol number: 107293)"

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined by the previous Data Resource article (King et al. 2019, Nature Neuroscience): "No formal power analysis was 

conducted, but the number of participants and the amount of data per participant was determined from prior experience. For the within-

subject sample size, we required 5.5 hours of fMRI data for each participant. This gave us enough power to reliably estimate activity patterns 

for the large number of tasks, as well as having enough data to perform out-of-sample prediction tests. A sample size of n=24 participants 

(after exclusions) was deemed sufficient to both estimate a representative mean organization, as well as obtaining reliable estimates of the 

between-subject variability." 

 

The present study also performed group-level analyses, ensuring similar statistical power to the original study.

Data exclusions In the current study, no subjects were excluded using the data published in the online repository.

Replication While no direct replication was performed with an external data set, cross-validation (within subjects) was performed across two independent 

recording sessions per participant to ensure robustness and reliability of results.

Randomization N/A -- participants were not allocated into separate groups.

Blinding No binding was performed, since between-group differences were not assessed.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type Task- and resting-state.

Design specifications From the original Data Resource article (King et al., 2019, Nature Neuroscience): "Two task sets. 2 fMRI scanning 

sessions per task set. 8 functional imaging runs per session (10-min each). 17 tasks per imaging run (35 s each)."

Behavioral performance measures From the original Data Resource article (King et al., 2019, Nature Neuroscience): "Variables recorded: response made, 

number of correct responses, false alarms, missed responses, response time. Accuracy (% correct) and reaction time 

(ms) were collected and averaged across tasks per participant"

Acquisition

Imaging type(s) From the original Data Resource article (King et al., 2019, Nature Neuroscience): "EPI, MPRAGE, and GRE field maps"

Field strength 3T

Sequence & imaging parameters From the original Data Resource article (King et al., 2019, Nature Neuroscience): "EPI: Gradient echo, multi-band (factor 

3, interleaved) with an in-plane acceleration (factor 2). Imaging parameters were: TR=1 sec, FOV=20.8cm, phase 

encoding direction was P to A, acquiring 48 slices with in-plane resolution of 2.5 mm x 2.5 mm and 3 mm thickness. For 

anatomical localization and normalization, a 5-min high-resolution scan of the whole brain was acquired (MPRAGE, 

FOV=15.6 cm x 24 cm x 24 cm, at 1x1x1 mm voxel size)."

Area of acquisition Whole-brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Resting-state and task-state fMRI data were minimally preprocessed using the Human Connectome Project (HCP) 

preprocessing pipeline within the Quantitative Neuroimaging Environment & Toolbox (QuNex, version 0.61.17). The HCP 

preprocessing pipeline consisted of anatomical reconstruction and segmentation, EPI reconstruction and segmentation, 

spatial normalization to the MNI152 template, and motion correction.

Normalization Nonlinear spatial normalization was performed to the MNI 152 template using QuNex.

Normalization template MNI152

Noise and artifact removal Additional nuisance regression was performed on the minimally preprocessed time series. Consistent with previous reports, 

this included six motion parameters, their derivatives, and the quadratics of those parameters (24 motion regressors in total). 

We also removed the mean physiological time series extracted from the white matter and ventricle voxels. We also included 

the quadratic, derivatives, and the derivatives of the quadratic time series of each of the white matter and ventricle time 

series (8 physiological nuisance signals). This amounted to 32 nuisance parameters in total, and was a nuisance regression 

model that was previously benchmarked (Ciric et al. 2017).

Volume censoring We excluded the first five volumes of each run.

Statistical modeling & inference

Model type and settings We used univariate GLMs to estimate task activations, and multivariate pattern analyses (RSA and decoding) analyses at the 

vertex-level.

Effect(s) tested Mean differences were tested for: Dimensionality; Segregation/Integration 

Associations (Pearson correlations) were tested between: Dimensionality, RA segregation, and Principal Component Gradient 

loadings.

Specify type of analysis: Whole brain ROI-based Both
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Statistic type for inference
(See Eklund et al. 2016)

Whole-brain analyses and inferences were made at the parcel-level using pre-defined cortical parcels (defined in Glasser et 

al., 2016, Nature).

Correction Since inferences were made at the whole-cortex level (or between systems across cortex), multiple comparisons correction 

was not necessary.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Pearson correlation was used to estimate functional connectivity matrices.

Graph analysis Weighted matrices thresholded at 20% were used to estimate principal gradient loadings, consistent with 

previous reports (Margulies et al., 2016, PNAS). Graph measures, such as network segregation, were applied 

on weighted and unthresholded matrices.

Multivariate modeling and predictive analysis Multivariate modeling was performed using multivariate pattern decoding on vertices within each cortical 

parcel. Additional estimates of multivarate analyses were included, such as representational dimensionality, 

which measures the participation ratio of the cross-validated representational similarity matrix. 

Representational similarity matrices were constructed using cross-validated cosine similarity across imaging 

sessions (within subjects).
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