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A B S T R A C T

Most neuroscientific studies have focused on task-evoked activations (activity amplitudes at specific brain loca-
tions), providing limited insight into the functional relationships between separate brain locations. Task-state
functional connectivity (FC) – statistical association between brain activity time series during task performance
– moves beyond task-evoked activations by quantifying functional interactions during tasks. However, many task-
state FC studies do not remove the first-order effect of task-evoked activations prior to estimating task-state FC. It
has been argued that this results in the ambiguous inference "likely active or interacting during the task", rather
than the intended inference "likely interacting during the task". Utilizing a neural mass computational model, we
verified that task-evoked activations substantially and inappropriately inflate task-state FC estimates, especially in
functional MRI (fMRI) data. Various methods attempting to address this problem have been developed, yet the
efficacies of these approaches have not been systematically assessed. We found that most standard approaches for
fitting and removing mean task-evoked activations were unable to correct these inflated correlations. In contrast,
methods that flexibly fit mean task-evoked response shapes effectively corrected the inflated correlations without
reducing effects of interest. Results with empirical fMRI data confirmed the model's predictions, revealing
activation-induced task-state FC inflation for both Pearson correlation and psychophysiological interaction (PPI)
approaches. These results demonstrate that removal of mean task-evoked activations using an approach that
flexibly models task-evoked response shape is an important preprocessing step for valid estimation of task-state
FC.
1. Introduction

Converging evidence across a wide variety of neuroscientific methods
applied across multiple species suggests cognition emerges from wide-
spread neural interactions (Cole et al., 2013; Gratton, 2013; Likhtik et al.,
2005; M. Siegel et al., 2015). A common way to characterize these
cognitive brain network interactions involves estimating task-state
functional connectivity (FC) – statistical associations between neural
time series during task performance (Friston, 2011, 1994). Typically,
such statistical associations are interpreted as evidence of interactions
between neural entities (e.g., neurons, local neural populations, brain
regions) (M. R. Cohen and Kohn, 2011; Friston, 2011). However, various
extraneous variables (e.g., physiological artifacts, in-scanner motion) can
confound such inferences (Behzadi et al., 2007; Birn et al., 2006; Power
et al., 2012a). We focus here on the possibility that neural activity
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time-locked to task events (“evoked” activity) is problematic for proper
task-state FC inferences.

As Fig. 1 illustrates, the proposed issue is that experimenter-
controlled task timing creates a shared temporal pattern in all neural
entities active in response to the task, irrespective of whether these
neural entities are interacting. This may create statistical associations
merely due to similarity with the task timing. For instance, presenting a
visual stimulus simultaneously with an auditory stimulus would increase
activity simultaneously in primary visual and primary auditory cortices,
increasing visual-auditory FC estimates despite no change in interaction
between these neural entities. Instead, it would be preferable to remove
such task-timing-driven statistical associations, leaving statistical asso-
ciations to be driven by moment-to-moment (and event-to-event) neural
activity fluctuations shared across neural entities (Fig. 1C, 1D, & 1E).
Notably, these remaining shared neural activity fluctuations are thought
niversity Ave, Suite 212, Newark, NJ, 07102, USA.
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Fig. 1. Illustration of the possibility that
task-evoked activations are problematic
for proper task-state FC inferences. A)
Graph depicting a scenario with no true
neural interaction between A and B. A and B
both increase their activity in response to
task events, but they do not interact either
directly or indirectly. The task event timing
nonetheless acts as a confounder to create an
artefactual correlation between the neural
populations ('original correlation'). Regress-
ing out the mean task activation (the first-
order effect of task) and estimating FC on
the residuals (the second-order effect of task;
‘post-task-regression correlation’) removes
this artefactual correlation. B) Even with a
true positive, the task-evoked activity inflates
the FC estimate relative to the ground truth
interaction. C) An illustration (with artificial
time series) of signal components underlying
the "no true interaction" scenario. “Induced
activity” is moment-to-moment variance in
brain activity that is not time-locked to task
timing. “Evoked activity” is event-to-event
(e.g., block-to-block or trial-to-trial) vari-
ance in the brain activity that is time-locked
to each task event onset. Note that evoked
activity always varies in amplitude event-to-
event in practice (due to the inherent noisi-
ness of brain processes). Subtracting the
mean evoked response from the timeseries
before computing the correlation corrects for
the inflation. D) An illustration of the "true
interaction" scenario. E) A hypothetical
example with only minimal induced vari-
ance, illustrating that "true" evoked covari-
ance can drive corrected task-state FC results
even after removing mean evoked responses.
This illustrates that removing the mean
evoked response does not remove all time-
locked signals, but rather only those that
are 100% consistent in amplitude with the
mean across task events. While this could
reduce effect sizes in theory, removing mean
evoked responses is unlikely to remove
evoked covariance of interest, given that
neural processes are inherently variable
across events.
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to reflect statistical interactions between the psychological context
induced by the task and underlying neural processes (Friston et al., 1997;
McLaren et al., 2012), allowing more valid estimation of task-state FC
separately from confounding effects of task-evoked activations.

A variety of researchers have considered such task-evoked activity to
be a confound for FC analyses for both invasive and non-invasive neural
recordings, and have implemented various strategies for controlling for
this confound during data analysis (Fair et al., 2007; Friston et al., 1997;
Gerstein and Perkel, 1972; Kalcher and Pfurtscheller, 1995; Narayanan
and Laubach, 2009). However, to our knowledge such task-state FC false
2

positives have not been systematically investigated in either simulations
or empirical data. Indeed, many task-state FC studies still do not
acknowledge this potential confound. These studies were justified in not
worrying about this putative problem, given that it has not been
conclusively established in the literature (it has only been assumed to be a
problem by some researchers). Thus, while this problem may already
seem very real to some researchers, many remain skeptical as to its ex-
istence. Moreover, beyond establishing the central problem of task FC
inflation (and its extent), there is a need to systematically evaluate
methods of correction, given the lack of methodological consensus
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among task-state FC studies that have acknowledged the problem.
Here we sought to more conclusively test the hypothesis that the task-

timing confound exists for task-state FC (for all neural recording
methods, not just functional MRI (fMRI)), using computational modeling.
Additionally, we tested the hypothesis that the task-timing confound is
more pronounced for fMRI data. This hypothesis is based on the
temporally-extended nature of hemodynamic response function (HRF)
profiles and their similarity across neural entities (despite not being
identical (Handwerker et al., 2004)). These HRF features may increase
the statistical similarity among task-timing-locked evoked fMRI re-
sponses. We reasoned that strategies to correct for the task-timing
confound would be even more critical for fMRI than for other methods
if this feature of fMRI data inflates the confounding effect of task timing.

As a starting point, we focused primarily on block (rather than event-
related) cognitive paradigms. This was done for both theoretical and
practical reasons. Theoretically, neural time series during block designs
are less likely to be strongly influenced by task timing effects, due to
fewer rest-to-task state transitions (Gitelman et al., 2003; O'Reilly et al.,
2012). This makes block designs a stronger test of the generalizability of
our task FC inflation hypothesis. In other words, if a task-timing
confound is found with block designs it is very likely to also be a prob-
lem for event-related designs. Practically, the sluggishness of fMRI he-
modynamics makes it difficult to separate temporally proximal events in
event-related designs, making it challenging to obtain clean estimates of
task-state FC for each task condition. This reflected our approach of
isolating task epochs from other rest or task epochs for all analyses,
which reduces (but does not eliminate, due to temporal autocorrelations)
the chance of state transitions driving observed false positives. It will be
important for future studies to verify that the conclusions drawn here
generalize to event-related designs.

The standard approach to correct for the task-timing confound is to fit
an event-averaged general linear model (GLM) of the task events either
simultaneously with task-state FC (as with psychophysiological interac-
tion; PPI) (McLaren et al., 2012; O'Reilly et al., 2012) or calculate FC
estimates using the residual time series of such a model (Al-Aidroos et al.,
2012; Cole et al., 2013; Gratton et al., 2016; Summerfield et al., 2006). To
clarify the rationale behind these approaches (following the parlance of
electroencephalography), inflation of task FC by task activations is cor-
rected by removing the mean “evoked” responses (time-locked to task
events) so as to isolate “induced” responses (responses influenced by task
events but that vary in timing across multiple instances of those events)
(Tallon-Baudry and Bertrand, 1999). Note that evoked responses that
vary in amplitude across events remain in addition to induced responses
(Truccolo et al., 2002a) (Fig. 1E). Thus, despite removing the primary
signal in task activation studies, removing the cross-event mean response
retains many sources of variance (both time-locked and non-time-locked)
that may drive FC effects of interest. Neural time series correlations that
remain after removing the cross-event mean response are termed “noise
correlations” in the non-human animal neurophysiology literature
(Cafaro and Rieke, 2010; M. R. Cohen and Kohn, 2011). One goal of the
present study is to determine whether only removing cross-event mean
Table 1
Overview of study objectives and approaches. All three approaches were used to as
independent of noise and artifacts) with empirical fMRI data limits the ability to v
computational models provided "ground truth" scenarios for verifying activation-indu
correction methods (as demonstrated in the neural mass model) one can use the redu

Approach Objectives

Determine whether task activations
increase FC false positives

Test methods to reduce
activation-induced FC inflation

1) Minimal
model

✓ ✓

2) Neural mass
model

✓ ✓

3) Empirical
fMRI data

~ ✓

3

evoked responses is adequate for eliminating task-activation-driven FC
inflation. A second goal is to evaluate the effect of different methods of
modeling the HRF on the reduction of task-inflation of FC estimates.

An overview of our approach is outlined in Table 1, while frequently
asked questions in response to earlier versions of this study are answered
in Table S1. We began by testing for the existence of the proposed task-
state FC confound using a highly simplified simulation. This was followed
by a more realistic simulation utilizing a neural mass computational
model that included more features of real neural data. Once the task-state
FC confound was identified in simulated fMRI (and non-fMRI) data, we
tested a variety of methods to correct for the confound. Once a confound-
correction method was identified, we tested its efficacy in real fMRI data.
Critically, demonstrating that this confound-correcting method has a
strong impact on results with real fMRI data would provide more
conclusive evidence that the confound exists and that correcting it mat-
ters in practice.

2. Methods

2.1. Minimal model

We began with a very simple test of the hypothesized task-timing-
induced FC inflation effect. This involved creating two Gaussian
random time series (mean¼ 0, standard deviation¼ 1) with very low
correlation (r¼�0.10), followed by adding a value of 1.0 during two
“task” blocks. This can be thought of as an increase in activity/excit-
ability for both “nodes”. Task blocks lasted 30 time points each, with 30
time points of “rest” before and after. The model and analysis of model
data were implemented in Python (version 2.7.13) with modules numpy
(version 1.12.1) and matplotlib (version 2.0.0). HRF convolution was
performed using a standard double-gamma HRF shape, treating each
time point as representing 1 s. Pearson correlation (numpy function
corrcoef) was used to estimate FC between the time series. Code to
implement the model and run all analyses are available here: https://
github.com/ColeLab/TaskFCRemoveMeanActivity/

2.2. Neural mass model

To extend the findings based on the minimal model, we developed a
neural mass model to simulate the large-scale activity and interaction
patterns of sets of thousands of neurons, based on standard neural mass
models (Cole et al., 2016a; Hopfield, 1984; Ito et al., 2017; Wilson and
Cowan, 1972). We sought to optimize the model simultaneously for
simplicity and biological interpretability. We expected simplicity to in-
crease the interpretability of results and computational tractability, while
we expected biological interpretability to facilitate the relationship be-
tween the simulation results to neuroimaging results. The core of the
model is a standard firing rate model, which uses a sigmoid transfer
(input-output) function (Cole et al., 2016a; Hopfield, 1984; Ito et al.,
2017; Wilson and Cowan, 1972). Using a standard firing rate model
increased the simplicity of the model compared to some alternatives,
sess the two study objectives. However, lack of "ground truth" (the true FC values
erify whether task activation increases FC false positives. In contrast, the two
ced FC inflation. Note that in the absence of false negatives driven by FC inflation
ction in empirical task-state FC estimates as indirect evidence of FC inflation.

Advantages Disadvantages

Minimal assumptions; know
"ground truth"

Missing key features of real FC

Includes key features of real FC;
know "ground truth"

More assumptions (than minimal model &
empirical data)

No assumptions (actual data of
interest)

Do not know "ground truth" (though
"ground null" estimated; Fig. S2)

https://github.com/ColeLab/TaskFCRemoveMeanActivity/
https://github.com/ColeLab/TaskFCRemoveMeanActivity/
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while remaining biologically plausible based on evidence that neural
populations exhibit a sigmoid-like transfer function reflecting variability
in the exact firing threshold across individual neurons (Hopfield, 1984).

We defined each node's output as:

uiðtÞ ¼ f ð Ii þ bias Þ i ¼ ½1::n� (1)

where ui is the output activity (population spike rate) for unit i at time t,
Ii is the input (population field potential) as defined below, and bias is
the bias (population resting potential, or excitability).

IiðtÞ ¼
Xn

j¼1

G wij ujðt � 1Þ þ di þ stimi (2)

where IiðtÞ is the input (population field potential) for unit i at time t, G is
the global coupling parameter (a scalar influencing all connection
strengths), wij is the synaptic weight from unit j to i, ujðt � τijÞ is the
output activity from unit j at the previous time step (τij was set to 1 for
simplicity), di is spontaneous activity (independent Gaussian random
values across nodes), and stimi is task stimulation (if any).

The initial condition (input at time point 0) of each unit for each
simulation was set to a Gaussian random value (mean 0, standard devi-
ation 1).

The sigmoid f ðxÞ (population threshold) in the node output equation
above is defined as:

f ðxÞ ¼ 1
1þ e�x

(3)

We reduced the arbitrariness of model parameter selection using a
principled parameter search. Parameters for the model were determined
based on optimizing for high task-state FC relative to resting-state FC
(without fMRI simulation). Specifically, we selected parameters that
generated the highest average task-state FC (relative to the average
resting-state FC) among the first 50 nodes in the 300-node network
described in the next section. Optimizing for only a portion of the entire
network reduced the chance that the optimization overfit to the partic-
ular network structure. Rerunning the model with multiple initial
random conditions (for the main analyses) also ensured overfitting was
not an issue. Notably, we did not optimize for higher task-state FC false
positives nor for high fMRI-based FC, such that we could test for fMRI-
based false positives as a hypothesis independent of how the model pa-
rameters were chosen. The parameter search involved all permutations of
the model parameters varied, with the following ranges: G¼ 1 to 10, self-
connections (diagonals in w)¼ 0 to 10, bias¼ -15 to 0, d¼ 1 to 10,
stim¼ 0.1 to 1.0 (in 0.1 increments).

Settings used for the model: di was a Gaussian random value with
mean 0 and standard deviation 3, G was set to 5, bias was set to �5, stim
was set to 0.3, and all self-connections (diagonals in w) were set to 1.
Setting the self-connection above 0 reflects the theoretical neurons
within the modeled neural population having synaptic connections
among each other, such that the same outputs sent to other units also
affect the unit that sent it. The model was implemented in Python
(version 2.7.13).

2.3. The model's network organization

The model's network included 300 nodes, selected to be in the same
range as some recent estimates of the number of functional regions in
human neocortex (Glasser et al., 2016; Van Essen et al., 2012). This
300-node network was given a functional network community structure,
based on empirical evidence of such large-scale network structure in the
human brain (Ito et al., 2017; Power et al., 2011; Spronk et al., 2017).
Briefly, the construction and running of each “subject's” network went as
follows: 1) Build structural and synaptic connectivity network architec-
ture, 2) Simulate neural activity during both a resting-state run and a
task-state run (detailed below), 3) Simulate fMRI data collection by
4

converting each node's “input” time series to fMRI via convolving with an
HRF and downsampling the resulting time series.

Network construction involved a series of steps (Cole et al., 2016a),
with the construction of the network model randomly initialized sepa-
rately for each “subject”. First, there was a 10% probability of any node in
the network connecting to any other. Next, three structural communities
were created by increasing the probability of connectivity within each set
of 100 nodes to 50%. This was then converted to a synaptic connectivity
matrix by adding a Gaussian random value to each structural connection
(mean of 1, standard deviation of 0.001). The first structural community
was then split into two “functional” communities (defined based on
synaptic weights, rather than the mere existence of a connection) by
multiplying the synaptic weights among the first 50 nodes (and, sepa-
rately, the second 50 nodes) by 1.2 and multiplying the connections
to/from the first and second 50 nodes by �0.2. Next, all connections
to/from the final 100 nodes and all other nodes were multiplied by 0,
completely isolating the final community from the rest of the network.
Finally, each node's synaptic connectivity was normalized such that all
inputs summed to 1.0. Input weight normalization is thought to be a
biologically realistic process (e.g., via each neuron regulating the number
of channels at each synapse) (Barral and D Reyes, 2016).

Task stimulation amplitude targeted 25 nodes in the first and last
network communities. Note that the setting of the bias to �5 was
consistent with units starting out at a near-0 firing rate (given the sigmoid
activation function that was used), modeling most neurons within a
modeled population being at a sub-threshold resting potential. Model
conversion to fMRI data involved convolution of variable HRFs with the
input time series from each node. The HRF differed for each simulated
subject and each region, though it differed more between subjects than
between regions, consistent with empirical evidence (Handwerker et al.,
2004). A standard double-gamma HRF function was used in all cases,
with variation in the double-gamma parameters across nodes and sub-
jects. Specifically, the values for peak time (3–9 in increments of 0.5 s),
undershoot time (3–17 in increments of 0.5 s), and undershoot ratio (0–1
in increments of 0.1) of a double-gamma HRF were varied randomly
(uniform distribution) by subject. Then, each node had these three pa-
rameters varied from a given subject's selected values based on a
Gaussian random distribution centered on 0 with a standard deviation of
1, with that value being the array index selecting from the set of allowed
values for each parameter (as indicated in the previous sentence). Note
that results were similar without HRF variability (i.e., with the same
non-canonical HRF shape used for all subjects and all regions). HRF
convolution was followed by sampling (selecting a single time point) of
the convolved time series at a time to repetition (TR) of 0.785 s, in the
range of multiband fMRI protocols (Chen et al., 2015).

The model was implemented with 24,600 time steps per “run”, with
each time step conceptualized as 50ms, such that the total simulated
time was conceptualized as 20.5min in duration. Each run was imple-
mented across 24 “subjects”, with a separate random seed used for each
subject for the spontaneous activity. The first run consisted of a resting-
state simulation with no task stimulation. The second run consisted of a
task-state simulation, with 6 task “blocks” of 2.5 min of constant stimu-
lation of the two sets of nodes indicated above. There was 30 s of non-
stimulation before and after each task block. All FC analyses used the
time points included in the 6 task blocks, ignoring the inter-block
periods.

2.4. FC estimation

Estimates of time series association were calculated using either
MATLAB (version R2014b) or R (version 2.15.1). Pearson correlation
was calculated as:

r ¼ covXY
SXSY

¼
Pn

i¼1

�
Xi � X

��
Yi � Y

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

�
Xi � X

�2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
Yi � Y

�2q
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Where S is the time series standard deviation, cov is the time series
covariance, X and Y are brain activity time series, n is the number of time
points, and X and Y are the time series means. Most analyses also
involved the Fisher's z-transform of the resulting Pearson correlation. The
Fisher's z-transform:

Fz ¼ atanhðrÞ
Psycho-physiological interaction (PPI) was estimated using simple

linear regression, which is equivalent to:

β ¼ covXY
varX

¼
Pn

i¼1

�
Xi � X

��
Yi � Y

�
Pn

i¼1

�
Xi � X

�2

Where var is the time series variance. The beta for each condition was
estimated separately for each condition, consistent with generalized PPI
(McLaren et al., 2012).

2.5. Empirical fMRI data collection

The empirical fMRI dataset was collected as part of the Washington
University-Minnesota Consortium Human Connectome Project (HCP)
(Van Essen et al., 2013). These data are publicly available, accessible at
https://www.humanconnectome.org. Participants were recruited from
Washington University (St. Louis, MO) and the surrounding area. All
participants gave informed consent. The data used were selected by the
HCP as the “100 unrelated” dataset, consisting of data from 100 partic-
ipants with no family relations. Data from 25 subjects were not used
because of excessive in-scanner movement (defined as over 50% of vol-
umes in any run with mean framewise displacement> 0.25mm) for
these subjects, such that data from 75 subjects were included in the final
analyses. Framewise displacement was calculated as described by Power
et al. (2012b), with a low-pass filter of 0.3 Hz applied as suggested by
Siegel et al. (2016) for multiband fMRI data.

Whole-brain echo-planar imaging acquisitions were acquired with a
32 channel head coil on a modified 3T Siemens Skyra with TR¼ 720ms,
TE¼ 33.1ms, flip angle¼ 52�, BW¼ 2290 Hz/Px, in-plane
FOV¼ 208� 180mm, 72 slices, 2.0mm isotropic voxels, with a multi-
band acceleration factor of 8 (Ugurbil et al., 2013). Data were
collected over two days. On each day 28min of rest (eyes open with
fixation) fMRI data across two runs were collected (56min total), fol-
lowed by 30min of task fMRI data collection (60min total). Each of the 7
tasks was completed over two consecutive fMRI runs. Resting-state data
collection details for this dataset can be found elsewhere (Smith et al.,
2013), as can task data details (Barch et al., 2013).

This dataset included 24 task conditions across seven tasks, with each
task completed by all subjects. All seven tasks were block designs, with
varying block durations and delays across the tasks. Task timing details,
as described by (2013), are included in Table 2.

2.6. Empirical fMRI dataset analysis

The empirical dataset preprocessing consisted of standard functional
connectivity preprocessing (typically performed with resting-state fMRI
data), with several modifications given that analyses were also
Table 2
Empirical fMRI task timing details. See (Barch et al., 2013) for more information r

Task name Number of blocks Number of trials p

Emotion 12 (1/2 face, 1/2 shape) 6
Gambling 8 (1/2 reward, 1/2 punish) 8
Language 16 (1/2 story, 1/2 math) Variable
Motor 20 (4 of each body part) 10
Social 10 (1/2 TOM, 1/2 Random) 1
Reasoning 12 (1/2 relational, 1/2 control) 9
Working memory 16 (1/2 0-back, 1/2 2-back) 10

5

performed on task-state data. Resting-state and task-state data were
preprocessed identically to facilitate comparisons between them. Spatial
normalization to a template (MSM-sulc), motion correction, intensity
normalization (normalized to a 4D whole brain mean of 10,000) were
already implemented in a minimally-processed version of the empirical
fMRI dataset described elsewhere (Glasser et al., 2013), so we began
preprocessing with this version of the data. With the surface (rather
than the volume) version of the minimally preprocessed data, we used
custom scripts in MATLAB to additionally remove nuisance time series
(motion, ventricle, and white matter signals, along with their derivatives)
using linear regression, and remove the linear trend for each run. A
low-pass temporal filter was not applied due to the possible presence of
task signals at higher frequencies (e.g., relative to slow resting–state
fluctuations).

Data were sampled from a set of 360 brain regions (rather than in-
dividual voxels/vertices) to make inferences at the region and systems
levels. We used an independently-identified set of putative functional
brain regions (Glasser et al., 2016) so as to reduce any potential circu-
larity in analyses (Kriegeskorte et al., 2009). The use of this parcellation
also reduces the chance of combining signals from multiple functional
regions as compared to anatomically-defined parcellations (Wig et al.,
2011). These brain regions were identified using parcellation of a variety
of data types, including resting-state functional connectivity, task acti-
vation, andmyelin maps (Glasser et al., 2016). Data were summarized for
each region by averaging signal in all vertices falling inside each region.

Preprocessing was carried out using Freesurfer (version 5.3.0-HCP),
FSL (version 5.0.8), and custom code in MATLAB 2014b (Mathworks)
for the 7-task dataset (using the minimally preprocessed version of the
data (Glasser et al., 2013)). Further analysis was carried out with MAT-
LAB and R.

We estimated FC using Pearson correlations and regressions between
time series from all pairs of brain regions using MATLAB (version
R2014b). For Pearson correlations, all computations used Fisher's z-
transformed values. FC estimation was straightforward for resting-state
data, as there were no additional steps after preprocessing prior to
calculating these values. For task data there were additional steps related
to task activation regression, as described in the following section.

FC differences were assessed using two-way t-tests paired by subject.
Multiple comparisons were corrected for using false discovery rate (FDR)
(Genovese et al., 2002). When comparing task-state FC to resting-state FC
estimates the number of time points contributing to those estimates were
matched. The beginning of the first resting-state fMRI run was used in all
cases, due to the increased likelihood of subjects falling asleep later in the
rest run (Tagliazucchi and Laufs, 2014).

2.7. Task-activation regression for task-state FC

Cross-event (trial and block) mean responses during task fMRI might
unduly influence task-related changes in FC. This was rigorously tested
using computational modeling, which informed our empirical fMRI data
analysis. We sought to suppress or remove such influences with task
regression techniques. This involved running standard fMRI general
linear model (GLM) analysis, and calculating FC based on the residuals.
Specifically, each region's task time series was modeled using a GLM,
with a distinct model depending on the analysis (as described below). To
egarding task timing in the Human Connectome Project dataset.

er block Mean block duration Mean inter-block delay duration

18 s 3.84 s
28 s 15 s
~30 s None
12 s 15 s
23 s 15 s
16 s 16 s
25 s 15 s

https://www.humanconnectome.org
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improve removal of task-related activation variance, a separate regressor
was included for each task condition (e.g., face stimuli vs. tool stimuli in
the N-back task; 24 task conditions total). Note that regressing out task
events using GLM removes the cross-event response means, retaining
event-to-event and sub-event fluctuations in time series such that these
sources of variability likely contribute the most to task FC estimates
(Rissman et al., 2004a; Truccolo et al., 2002b). The residuals from this
regression model were used for FC estimation, restricted to time points
corresponding to the current task. A standard hemodynamic lag was
included when determining task timing, by convolving the timing with a
canonical HRF and selecting time points with a value above 0.

FC estimation was conducted along with no task regression, canonical
HRF task regression, constrained basis set task regression, or finite im-
pulse response (FIR) task regression. Other than the task regression step,
all steps were identical in the no-task-regression case as when task
regression was used. Canonical HRF task regression involved use of the
SPM software function spm_hrf.m with the default parameters to create
the HRF. This HRF was then convolved with each of the 24 task condition
time series, then fit using ordinary least squares regression in MATLAB
(function regress.m). Constrained basis set task regression involved cre-
ation of a set number of basis set regressors (either 5 or 28) in the FLOBS
interface in FSL software (version 5.0.8; default parameters) (Woolrich
et al., 2004). Note that the first three basis function regressors are highly
similar to the canonical, time, and dispersion derivatives often used
together to model task activations in SPM software (Woolrich et al.,
2004). These basis set functions were then convolved with each of the 24
task condition time series before fitting them to the brain region time
series (identically to the canonical HRF approach).

The FIR task regression approach involved fitting the cross-trial/
cross-block mean response for each time point in a set window length
that is time-locked to the trial/block onset for a given task condition. This
allows the fit to be completely flexible with regard to the HRF response
shape, so long as it is consistent across trials/blocks for that condition.
Each of the 24 task conditions were fit with a series of regressors, one per
time point. Each condition's window length matched the duration of the
events, with an additional 18 s (25 regressors) added to account for the
likely duration of the HRF. Note that FIR regression is nearly identical to
simply subtracting the mean evoked response (see Fig. 1), which is a
standard method in the spike correlation literature for removing task-
evoked activation-driven inflations (Cafaro and Rieke, 2010). The pri-
mary difference is that FIR regression can better deal with overlap in
observed task events (Miezin et al., 2000), which is especially useful for
fMRI data given the sluggishness of hemodynamic responses.

2.8. Data and code availability statement

The empirical fMRI data used in this study are openly available from
the Human Connectome Project Connectome DB at https://db.
humanconnectome.org. The network partition used for analyzing and
visualizing the empirical fMRI data – The Cole-Anticevic Brain-wide
Network Partition (CAB-NP) – is openly available at https://github.com/
ColeLab/ColeAnticevicNetPartition. Code used in the present study (and
which can be used to reproduce the computational modeling data and
analyses) is openly available at https://github.com/ColeLab/
TaskFCRemoveMeanActivity/.

3. Results

3.1. A minimal model to demonstrate activation-induced false positives in
task-state FC estimates

We sought to determine the efficacy of standard task-state FC esti-
mation methods, specifically the possibility of FC false positives arising
from task-evoked activations (mentioned as a likely possibility in many
previous studies). We were interested both in the activation-induced
inflation effect generally (regardless of data collection method), as well
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as any fMRI-specific effects. We began by using an extremely minimal
test of the proposed FC-estimate inflation, in the hopes of establishing the
effect theoretically and identifying likely causes of the inflation.

The easy-to-read Python code used for the minimal model (including
figure creation) can be accessed here in a Jupyter Notebook: https://
github.com/ColeLab/TaskFCRemoveMeanActivity/. This minimal
demonstration involved creating two Gaussian random time series with
very low correlation (r¼�0.10) (Fig. 2A), followed by adding a value of
1.0 for two “task blocks” for both time series (Fig. 2B). This can be
thought of as an increase in activity for both “nodes”. Consistent with the
hypothesized task-timing confound, the time series went from an original
whole-time-series correlation of r¼�0.10 to a whole-time-series corre-
lation (i.e., not restricted to just the “task” portion of the time series) of
r¼ 0.79. This increase held despite the absence of a correlation in the
“task” segment (r¼�0.07) (Fig. 2C). This demonstrates the importance
of isolating task from non-task time periods when calculating task-state
FC, since transient rest-to-task activity transitions can drive overall cor-
relation increases. In more realistic neural time series (see the next sec-
tion), however, temporal autocorrelation would prevent such clean
separation of task and non-task time periods. Thus, both fMRI and non-
fMRI data likely suffer from task-state FC inflation due to timeseries
autocorrelation induced by the onset of task events (Truccolo et al.,
2009) (we explore this possibility in the subsequent section).

We next investigated the effect of fMRI (hemodynamics) on task-state
FC estimates. This involved convolving the exact same time series with a
canonical HRF. Convolution did not substantially change the non-“task”
correlation (r¼ 0.01) (Fig. 2D), but the “task” correlation was highly
inflated (r¼ 0.95) (Fig. 2E). Unlike the “neural” time series (Fig. 2C), this
inflation remained even after isolating the task time points (as well as 10
time points to account for HRF lag) (Fig. 2F). This demonstrates that the
correlation inflation is strongly driven by an interaction between an in-
crease in time series amplitude and HRF convolution.

We next sought to test if subtracting the mean evoked responses
(Fig. 2H) from each task event (equivalent to task GLM regression) would
reduce the FC inflation. This is the standard approach to reduce potential
activation-induced inflation of task FC estimates in the fMRI (Cole et al.,
2013; Gratton et al., 2016) and spike correlation (Averbeck et al., 2006;
Grün, 2009) literature. This involved simply averaging the time-locked
activity across task blocks and subtracting the mean evoked time series
from each task block. As expected, the “task” correlation was substan-
tially reduced (r¼�0.04) (Fig. 2I). This demonstrates the efficacy of task
regression (mean evoked response subtraction) for reducing
task-amplitude-induced correlation/FC inflation.

3.2. Neural mass model: testing for false positives with a more realistic
computational model

While the simplicity of the prior demonstration gave it clarity, it
lacked many features of real neural interactions. Therefore, we next
characterized the task-timing-induced false positives using a more real-
istic neural mass computational model with biologically-interpretable
parameters. This involved a standard neural mass model (Cole et al.,
2016a; Hopfield, 1984; Ito et al., 2017). Unlike the minimal model in the
previous section, the neural mass model provides: interactions among
neural units (allowing us to test for false negatives), enough neural
masses to plausibly match the number of functional cortical regions in
humans (Glasser et al., 2016), large-scale network structure (Power et al.,
2011; Yeo et al., 2011), hemodynamic variability (Handwerker et al.,
2004), event-to-event variation in neural signals (in addition to
moment-to-moment variation) (Fox et al., 2007, 2006), and temporal
autocorrelation (Murray et al., 2014; Truccolo et al., 2009).

We constructed a series of large-scale network communities, given
the presence of such communities in many real-world networks (Girvan
and Newman, 2002) including the human brain (Power et al., 2011; Yeo
et al., 2011). We began by making three structural communities of 100
nodes each (Fig. 3A; see Methods) (Cole et al., 2016a). Importantly, we

https://db.humanconnectome.org
https://db.humanconnectome.org
https://github.com/ColeLab/ColeAnticevicNetPartition
https://github.com/ColeLab/ColeAnticevicNetPartition
https://github.com/ColeLab/TaskFCRemoveMeanActivity/
https://github.com/ColeLab/TaskFCRemoveMeanActivity/
https://github.com/ColeLab/TaskFCRemoveMeanActivity/
https://github.com/ColeLab/TaskFCRemoveMeanActivity/


Fig. 2. Minimal model: fMRI task-state FC inflation is primarily driven by HRF convolution (temporal autocorrelation), and inflation is corrected by
subtraction of mean evoked responses. A) Two Gaussian random time series were generated to simulate spontaneous activity in two neural regions that are not
“truly” interacting at the neural level. Their correlation is shown in the upper-left corner (as in all other panels). B) A 00task" was simulated by adding activity in two
task blocks. This increased the inter-region correlation substantially, indicating the critical role of rest-to-task state transitions in driving correlations. C) Simply
isolating the task time points (removing the rest-to-task state transition) removed the correlation inflation. D) The identical time series in panel A convolved with a
standard HRF to simulate the fMRI BOLD response. E) An HRF-convolved version of the time series in panel B. F) Unlike the "neural" time series, isolating task time
points in the "fMRI00 time series did not remove the correlation inflation. G) Removing the block start and stop transients reduced the correlation inflation, but it was
still substantially inflated. H) The mean evoked response for each region. I) Subtracting the mean evoked response from each region completely removed the cor-
relation inflation in the "fMRI00 data.
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removed all structural connections to/from the last community (the “no
connectivity zone”), allowing us to test for false positives in subsequent
analyses (see upper-right corner of Fig. 3A).

We next used the neural mass model to simulate collection and
analysis of resting-state FC with fMRI (Fig. 3B). To simulate fMRI data,
the input (population field potential) time series convolved with an HRF
and down sampled. We found that the resting-state FC matrix was
significantly similar to the large-scale structure of the synaptic connec-
tivity matrix (mean r¼ 0.47, t (23)¼ 266, p< 0.00001). Further, there
were minimal false positives (0.8%) in the “no connectivity” zone at a t-
test threshold of p< 0.01. As is standard for tests for false positives when
the null is known to be true, correction for multiple comparisons was not
applied, since it would complicate calculation of the false positive rate.
Given that we use p< 0.01, one can interpret any false positives beyond
the 1% rate as true false positives.

We then simulated task-state FC by stimulating two sets of units, in
the first and last functional communities (Fig. 3C). Task stimulation
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consisted of a small constant input (0.3) across 50 nodes (25 for each of
the two communities) in six task blocks. Only the on-stimulation times
were analyzed for task FC to reduce the influence of on/off task tran-
sients. Increased task-state FC compared to resting-state FC was wide-
spread (Fig. 3D). This is consistent with the observation of task-state FC
across a wide variety of brain systems and tasks in the fMRI literature
(Cole et al., 2014; Krienen et al., 2014). However, it was apparent that a
large number of false positives were present in the “no connectivity”
zone: 42.58% false positives for task vs. rest FC (p< 0.01). This appeared
to be driven primarily (but not exclusively) by the fMRI simulation, since
the false positive rate was only 1.99% (task vs. rest, p< 0.01) with the
same data prior to fMRI simulation.
3.3. Neural mass model: testing for correction of the false positive rate with
a more realistic computational model

Given verification of a systematic inflation of the false positive rate



Fig. 3. The neural mass model, with fMRI simulation and "no connectivity zone" to test for false positives. A) Three structural communities were constructed
(100 nodes each), with the first community split into two communities via synaptic connectivity. The first and second structural communities had random connectivity
(10% density), while the third community had no connections with the rest of the network. Connections to/from the third community acted as tests for false positives
in subsequent simulations (the "no connectivity zone"). B) We simulated fMRI by convolving the input time series of each unit with a hemodynamic response function
(HRF) and downsampling (every 785ms). Spontaneous activity without task stimulation was used to produce this FC matrix. T-tests vs. 0 were based on across-subject
variance, with each “subject” being a random initialization of the synaptic connectivity matrix and spontaneous activity. Note the low false positive rate (0.81%) (i.e.
the lack of significant connections showing up in the ground truth “no connectivity zone”). C) Two populations of 25 nodes (indicated by yellow stars) were stimulated
simultaneously across 6 task blocks. Two completely unconnected communities were stimulated to test for false positives. Note the increase in false positive con-
nections in the “no connectivity zone” (41%). D) T-tests indicated an inflated false positive rate of 40% when comparing task FC to rest FC. Note that without fMRI
simulation (i.e., no HRF or downsampling) the false positive rate was 1.99%.
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we next tested proposed approaches to correcting this false positive rate.
These typically involve regressing out the task timing, which involves
using the residuals of a GLM as the time series to compute task-state FC.
This is very similar to simultaneous fitting of task-state FC and task ac-
tivations when using PPI (Friston et al., 1997; McLaren et al., 2012;
O'Reilly et al., 2012). When a finite impulse response (FIR) GLM is used
(Cordova et al., 2016; Fair et al., 2007; Norman-Haignere et al., 2012),
this is also very similar to simply subtracting the mean evoked response
in the spike correlation literature (Averbeck et al., 2006; Grün, 2009).
Critically, however, since our simulations provided “ground truth”
knowledge of the false positive rate we were able to validate the ap-
proaches and verify their efficacy for reducing the false positive rate.

We began by using the most common approach for reducing false
positives – fitting the “canonical” HRF shape to remove cross-event mean
response correlated with task timing (Fig. 4A). This is the same HRF
shape used in PPI (O'Reilly et al., 2012) and related approaches (Cole
et al., 2014). We found that task regression with this canonical HRF
shape reduced the false positive rate somewhat but failed to bring it
below the 1% specified by the p-value threshold (p< 0.01): 20.34% false
positive rate (Fig. 4B). We next used a worst-case scenario “flipped” HRF
shape to determine if having an approximately-correct HRF shape (as
with the canonical HRF) mattered for reducing the false positive rate
(Fig. 4A). We found that using the wrong HRF shape did a worse job of
reducing the false positive rate than the canonical HRF (Fig. 4C): 25.43%
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false positive rate. This suggests that the relative accuracy of the HRF
shape matters.

A standard approach for empirically determining the correct HRF
shape for task regression is finite impulse response (FIR) modeling
(Cordova et al., 2016; Fair et al., 2007; Norman-Haignere et al., 2012).
This involves including a binary regressor for every time point in the task
event/block (Fig. 4A) and using the residual time series, which is virtu-
ally identical to simply subtracting the mean evoked response (see
Figs. 1C and 2I). This is sometimes referred to as “background connec-
tivity” analysis when used with a block experimental design (as here)
(Cordova et al., 2016; Norman-Haignere et al., 2012). As expected, we
found that FIR modeling successfully reduced the false positive rate
below the 1% specified by the p-value threshold (p< 0.01): 0.94% false
positive rate.

The success of the FIR approach suggested that flexibly fitting each
region's (for each subject's) HRF shape was critical for correcting the false
positive rate. We next tested this hypothesis more fully by using an
alternative approach that also flexibly fits HRF shapes, but with fewer
regressors. This approach – the constrained basis set approach (Woolrich
et al., 2004) – involves reducing many plausible HRF shapes (variants on
the canonical HRF) to a select set of basis functions using singular value
decomposition. Note that the first three regressors included as basis
functions were highly similar to the canonical, temporal derivative, and
dispersion derivative regressors (respectively) commonly used with SPM



Fig. 4. Testing task-timing regression approaches to reduce false positive rate. While some researchers investigating task FC fMRI ignore this problem, there are
several standard approaches for attempting to reduce potential false positives. Critically, the 300-node computational model can provide a ground-truth scenario for
testing the validity of these approaches. Note that all approaches are designed to leave moment-to-moment (and event-to-event) task-related variance in the time
series, but to remove cross-event responses related to the task's timing. Task vs. rest Pearson correlation differences (t-test p< 0.01 thresholded) are shown. A) The 4
tested approaches are illustrated. The canonical HRF shape is what is typically used to reduce false positives in the literature, as with PPI. To assess whether the HRF
shape mattered a “wrong” HRF was also used. The finite impulse response (FIR) and constrained basis set approaches are flexible, allowing them to fit the actual HRF
shape. B) The canonical HRF shape task regression. There was a reduction from the no-regression condition (42.58%) but the remaining high false positive rate
(20.34%) demonstrates that task regression with the canonical HRF is helpful but fails to correct the problem. Results were highly similar for the "flipped" HRF shape
version (not shown). C) Task regression with the FIR approach eliminates the problem, with the false positive rate just below the expected detection rate of 1% (given
our p< 0.01 threshold). D) Task regression with a basis set of 5 regressors (accounting for 99.5% of the variance among 1000 plausible HRF shapes) was also
successful in reducing the false positive rate (1.05%). E) False positive rates across six variants of the analyses. Since results were thresholded at p< 0.01, any values
above 1% can be considered false positives. F) False negative rates across five variants, with the pre-fMRI/neural variant treated as the "ground truth". The entire
300� 300 connectivity matrix was included in this analysis (rather than just the no connectivity zone). The fMRI simulation resulted in false negatives due to temporal
smearing and downsampling, yet task regression reduced these false negatives.
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software (Woolrich et al., 2004).
Consistent with our hypothesis, we found that the constrained basis

set approach also reduced the false positive rate to the level expected
with the p-value threshold (p< 0.01) (Fig. 4E): 1.05% false positive rate.
These results confirm that flexibly fitting each region's HRF was impor-
tant for reducing the false positive rate, though it appeared that the basis
set approach was somewhat less effective than the FIR approach.
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3.4. Neural mass model: testing for potential false negatives due to large
numbers of regressors

Given that the approaches involving more regression parameters did
better, it is possible that the reduction in false positives was due to
removing variance generally (rather than just the variance associated
with false positives). This possibility predicts that the FIR and
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constrained basis set approaches would inflate false negatives along with
reducing false positives. We began by setting a baseline by comparing no-
task-regression fMRI FC estimates to no-task-regression neural FC esti-
mates (i.e., the data prior to HRF convolution). This isolated the effect of
the fMRI simulation on the FC results, given that fMRI simulation was the
only difference between these two conditions. We found a 14.48% false
negative rate (along with a 19.31% false positive rate) for no-task-
regression fMRI FC relative to no-task-regression neural FC. Based on
this, a 14.48% or lower false negative rate when using the FIR or basis set
approach would indicate that these approaches did not increase the false
negative rate (Fig. 4F).

As expected, the false negative rate for the FIR and basis set ap-
proaches were both below 14.48%: 13.67% for FIR and 12.82% for basis
set. These results suggest that the FIR and basis set approaches removed
variance that was inappropriately altering FC estimates, both in terms of
false positives and false negatives. Note that, when using the entire FC
matrix (rather than just the no-connectivity zone), the false positive rate
dropped from 19.31% for no-task-regression to 0.75% for FIR and 0.75%
for basis set approaches – smaller false positive rates than observed when
focusing solely on the no-connectivity zone. Together these results sug-
gest that the extra regression parameters included in the FIR and basis set
approaches are unlikely to reduce false positives by also reducing true
effects (and that they can actually increase detection of true effects).

3.5. Empirical fMRI data: testing the efficacy of false-positive-reduction
approaches

We next tested the ability of the FIR and constrained basis set ap-
proaches to reduce task-state FC false positives relative to other standard
false-positive-reduction approaches (see Table 1). Unlike the computa-
tional models, we did not know the “ground truth” here, so we had to rely
on any reduction in detected task-state FC as a proxy for false-positive
reduction. Importantly, the FIR and constrained basis set approaches
are unlikely to create false negatives given that they did not inflate the
false negative rate in the neural mass model (Fig. 4F).

A set of 360 functionally-defined nodes were used (Glasser et al.,
2016) (Fig. 5A) to calculate cortex-wide FC across seven highly distinct
tasks in 100 healthy young adults. Without task regression the percent-
age of connections that increased from resting-state FC to task-evoked FC
(false discovery rate corrected for multiple comparisons) was 7.22%
across the seven tasks (Fig. 5B). Only slightly reduced values were found
for task regression with the canonical HRF approach (4.90%). Critically,
there were substantial reductions in the percentage of task-state FC in-
creases when using the FIR (2.49%) and constrained basis set (3.01%)
Fig. 5. Analysis of empirical fMRI data reveals likely false positive rates for t
correlations). A) The regions used for data analysis, as defined by Glasser et al. (2016
(Spronk et al., 2017) in subsequent figures. These assignments were used solely for vis
match the network labels in Fig. 6. B) The cross-7-task average rate of significant tas
FDR corrected for multiple comparisons, p< 0.05). To the extent that the FIR app
percentages suggest a false positive rate of 65.5% without task-regression preproce
approaches. There were 2.9 times more significant FC increases without task regressi
used here simply as a baseline (to control for FC driven by spontaneous activity) ra
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approaches. These results suggest that the model results presented pre-
viously likely showed a “worst case” scenario, but that false positives can
nonetheless almost triple the rate of detected task-state FC changes when
an effective task regression approach is not used. See Supplementary
Materials for more details.

Given that FIR modeling was most effective in reducing false positives
in the neural mass model, and reduced task-state FC estimates the most in
the empirical data, we identified FIR as the preferred method. This
conclusion is further supported by a supplementary analysis found that
FIR task regression reduced inter-subject correlations (time series cor-
relations primarily driven by task timing) the most among the tested
methods (Fig. S1). Having identified FIR as the preferred method, we
next quantified the amount of likely task FC inflation by comparing the
no-task-regression task FC estimates versus task FC estimates with FIR-
based task-timing regression. This involved comparing each connec-
tion's FC value without task regression to its FC value with FIR regression.
Fig. 6 plots these statistically significant (p< 0.05, FDR corrected) dif-
ferences for all seven tasks individually. The percentage of connections
with significant (p< 0.05, FDR corrected) differences for each task are
reported in Table 3, with significant increases and decreases in FC
strength between the approaches listed separately. Note that these false
positive estimates were highly similar to false positive estimates obtained
using a non-parametric shuffling procedure often used for correcting
task-timing confounds in spike correlation studies (see Supplementary
Materials, Fig. S2). Additionally, we found substantial task-timing-
induced FC inflation with PPI analysis relative to the FIR approach (see
Supplementary Materials). These results demonstrate that task-timing
regression matters in practice, as it significantly alters task-state FC es-
timates across a broad variety of brain regions across a broad variety of
task manipulations.

3.6. Empirical fMRI data: testing for generalization to task vs. task FC
changes

The prior results demonstrate inflation of task-state FC, suggesting
that task-to-task FC differences would also be altered. This result was not
guaranteed, however, given the possibility that the task-state FC in-
flations reported above were subtle and therefore only detectable for
large cognitive contrasts (such as between task and rest). We tested for
cross-task alterations in the well-studied N-back task's 2-back vs. 0-back
contrast (Barch et al., 2013). This is one of the seven tasks included in the
prior analyses, now with the 2-back and 0-back conditions estimated
separately.

As expected, we found that results were similar with the cross-task FC
ask-state FC estimates (with resting-state FC as a control for spontaneous
). Colors reflect functional network assignments used for FC matrix visualization
ualization – results were not affected by the chosen network assignments. Colors
k-state FC increases from resting-state FC are shown (using Pearson correlation,
roach eliminates false positives (demonstrated in the neural mass model), the
ssing, 49.2% with canonical HRF and 17.3% with constrained basis set model
on compared to when FIR task regression was used. Note that resting-state FC is
ther than as the ground truth FC.



Fig. 6. Estimated FC inflation for each of the 7 tasks. Task-evoked activation-based FC inflation was estimated by contrasting no-regression from FIR-regressed task
FC estimates. Only statistically significant (p< 0.05, FDR corrected) differences are shown for each task. Each FC matrix is shown with the name of each task and the
percentage of connections (of the entire 360� 360 FC matrix) that were significantly different between the no-regression and the FIR-regressed task FC estimates. Note
that all tasks involved visual stimuli except for the language task.
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comparison as the task-to-rest FC comparison. Specifically, the ap-
proaches that flexibly modeled the HRF shape (FIR and basis set ap-
proaches) produced fewer significant results than alternate approaches
(Fig. 7). Without task regression the percentage of connections with task-
state FC changes (false discovery rate corrected for multiple comparisons,
p< 0.05) was 28.14% (Fig. 7A). Only slightly reduced values were found
for task regression with the canonical HRF approach (24.97%; Fig. 7B).
Consistent with the task-to-rest FC comparison results, there were
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substantial reductions in the percentage of task-state FC increases when
using the constrained basis set (12.92%; Fig. 7C) and FIR (2.89%;
Fig. 7D) approaches. In contrast with the task-to-rest FC comparison re-
sults, however, FIR regression reduced the number of significant results
relative to the basis set approach (2.89% vs. 12.92%). Notably, the sig-
nificant reduction of visual network FC with the dorsal attention network
(from 2-back to 0-back) was present for three of the methods but went
away with FIR regression – the method that most flexibly fits HRF shape



Table 3
Amount of likely activation-induced task FC inflation. Comparison of no
regression vs. FIR regression approaches, listed for each of the empirical fMRI
tasks. The numbers indicate the percentage (out of all possible pairwise con-
nections) of significant task FC differences (p< 0.05 FDR corrected), comparing
FC estimates between no-task-regression and FIR-task-regression approaches.
These percentages are based on the values plotted in Fig. 6, but separating in-
creases from decreases in FC estimates with no task regression (relative to FIR
regression). For example, 10.9% increased connections for the Emotion task in-
dicates that 10.9% of all 64,620 connections were significantly larger between no
task regression vs. with FIR regression. A similar table reporting PPI inflation can
be found in the Supplementary Material (Table S2).

Task name % connections increased with
no-task-regression

% connections decreased with
no-task-regression

Emotion 10.9% 7.2%
Gambling 36.0% 8.9%
Language 27.9% 25.0%
Motor 29.7% 3.6%
Social 41.5% 13.2%
Reasoning 49.8% 15.9%
Working
memory

28.3% 8.8%
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and thus likely best reduces false positives. This demonstrates a large-
scale conclusion that could have been reached erroneously if FIR
regression was not used to remove task activations.

These results suggest that the small FC differences between well-
matched task conditions can be more sensitive than task-to-rest com-
parisons to the quality of GLM fit for the FC pattern that emerges. Based
on the neural mass model results indicating that the fMRI data better
reflect neural (i.e., input/LFP) data when using the FIR approach, and the
additional flexibility of the FIR approach (without inflated false nega-
tives) relative to the basis set approach, we interpret the FIR results as
likely being more accurate than the other approaches. Note, however,
that (regardless of regression method) concluding a true change in FC
occurred – rather than a change in unshared variance (e.g., noise) –

would require additional tests such as unscaled covariance (Cole et al.,
2016b; Duff et al., 2018).

Empirical fMRI data: Visualizing the relationship between task co-
activation and task-state FC inflation.

We next sought to visualize the correspondence between mean task-
evoked responses (as estimated using GLM analysis) and task-state FC
inflation to help further empirically establish its robustness. First, we
calculated task-state FC inflation as the difference between no-regression
task FC and FIR-regressed task FC. We then visualized this difference for
all connections for an example task – the “working memory” HCP task
(Fig. 8A). The working memory task was chosen as the example task due
to there being more data per subject for that task than the others
(increasing statistical power). This revealed that much of the task-state
FC inflation was related to visual network connections, consistent with
this being a task involving visual stimuli. Notably, not all connection
changes were positive, suggesting that co-activations in the opposite
direction (e.g., a positive activation for one region and a negative acti-
vation in the other) could lead to artificial FC reductions. We verified that
this is a likely explanation for FC reductions by visualizing the FC
inflation results alongside the actual activation pattern (Fig. 8A). Spe-
cifically, it appeared that negative activation in default-mode network
regions (see upper portion of activation vector in Fig. 8A) led to under-
estimated FC with the positively-activated visual network regions (see
blue values in upper-left of Fig. 8A FC matrix).

We next sought to create a simple summary of the task-state FC
inflation by region, so it could be compared directly to the task activation
pattern. This involved summing the task-state inflation values by region
(i.e., summing across all the columns in the task-state FC inflation matrix
for each row), after taking the absolute value for each number. This is
visualized for the example task in Fig. 8A (see right ‘Summed FC in-
flations’ vector). We found that this simple summary correlated
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significantly with the actual activation pattern for all seven tasks, all
p< 0.00001 except for Task 3 (the “language” task; p¼ 0.0003). The
Spearman rank correlation rho values for each task, respectively: 0.35,
0.31, 0.19, 0.47, 0.56, 0.56, 0.49. These results demonstrate the
robustness of the association between task-evoked activations and task-
state FC inflation.

To further illustrate the relationship between activation and task FC
inflation, we next sought to create a simple prediction of task-state FC
inflation based only on the observed co-activation pattern. Task-state co-
activation inflation was conceptualized simply as the pairwise product of
the task GLM estimates. Multiplying the activation values results in cases
wherein large positive co-activations are expected to create the largest
increases in task FC estimates. In contrast, co-activations in the opposite
direction (e.g., a positive activation and a negative activation) are ex-
pected to cause task FC estimate decreases. This sort of prediction is
visualized for the example task in Fig. 8B, showing robust correspon-
dence with the actual task-state FC inflation pattern (Fig. 8A). This cor-
respondence between the predicted and actual task-state FC inflation was
statistically significant across all seven tasks (all p< 0.00001). The
Spearman rank correlation rho values for each task was, respectively:
0.51, 0.74, 0.04, 0.28, 0.67, 0.60, 0.60. Note that the third (“language”)
task was still statistically significant despite having a small effect size,
given the large N when comparing entire FC matrices (64,620). These
results further demonstrate the robust association between task-evoked
activations and task-state FC inflation, this time by starting from the
co-activation patterns to show how even complex patterns of FC can be
driven by activation-based inflation. Note that we did not expect exact
correspondence between the predicted and actual task-state FC in-
flations, given that (among other factors influencing FC inflation) HRF
shape is known to vary across regions, which likely adds noise and re-
duces FC inflation.

4. Discussion

We found strong evidence that task-evoked activations led to spurious
but systematic changes in fMRI-based task FC estimates. This was noted
as a possibility in previous publications (Al-Aidroos et al., 2012; Cole
et al., 2013; Fair et al., 2007; Friston et al., 1997; Gratton et al., 2016)
but, to our knowledge, has never been conclusively established theoret-
ically (using computational modeling) or empirically. Further, this hy-
pothesized issue with task FC has typically been described generally,
without reference to it being particularly problematic for fMRI analyses.
We began by modeling the hypothesized effect using two computational
models. Notably, we did not force the models to show activation-induced
FC inflation, but discovered that it emerged simply from modeling fMRI
task activations. Critically, beyond merely demonstrating the extent of
the task-state FC inflation, we also evaluated the efficacy of different
correction methods. Regression methods that flexibly fit hemodynamic
response shape – FIR and basis set GLM approaches – were found to
eliminate activation-induced FC inflation (without increasing false neg-
atives), whereas alternative methods did not. Consistent with these
theoretical results, we found that FIR and basis set approaches signifi-
cantly reduced task FC estimates in empirical fMRI data. We found that
the FIR approach reduced task FC estimates the most, consistent with its
unique ability to flexibly fit any possible HRF shape, suggesting this as
the preferred approach. See Table S1 for further discussion of these and
related topics.

4.1. Why event-averaged task activation variance should be removed prior
to estimating task FC

Our extensive computational and empirical investigation of
activation-induced FC inflation suggests several reasons why event-
averaged task activations should be removed prior to estimating task
FC. For instance, we found that FC changes and activation amplitude
changes are statistically and mechanistically distinct, such that they have



Fig. 7. Task-to-task FC comparison: 2-back vs. 0-back (N-back working memory task). A) 2-back vs. 0-back FC differences, with no task regression preprocessing
(p< 0.05, FDR corrected for multiple comparisons). B) Identical to panel A, but with constrained basis set task regression preprocessing. C) Identical to panel A, but
with canonical HRF task regression preprocessing. Note the visual similarity to the no-task-regression results. D) Identical to panel A, but with FIR task regression
preprocessing.
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meaningfully distinct implications for neuroscientific theory. Specif-
ically, event-averaged task-evoked activations involve consistent cross-
event activity amplitudes, while task-state FC involves synchronous
moment-to-moment changes in activity indicative of direct or indirect
neural interactions. This distinction can also be thought of as task-evoked
activation being enhanced by low variance (amplitude consistency)
contrasting with task-state FC potentially being enhanced by high vari-
ance (moment-to-moment covariance). Thus, even if one finds event-
averaged task-evoked activation patterns of interest, they should be
investigated separately from task-state FC due to this mechanistic
distinction between them. Indeed, there are already sub-fields investi-
gating task-evoked activation patterns – multivariate pattern analysis
(Norman et al., 2006) and standard GLM analysis (Poline and Brett,
2012) – again supporting the conclusion that such effects should be
isolated from task-state FC estimates.

Another reason to remove task activations prior to estimating task FC
is that allowing task-evoked activations to inflate task-state FC estimates
leaves open the possibility that new task-state FC effects are simply
relabeling previously-discovered task-evoked activation effects as “con-
nectivity”. This suggests that some previously-discovered effects that
13
either did not remove any task activation variance, or that used a sub-
optimal approach for removing task activation variance, could have been
driven to some extent by task-evoked activation changes. Notably, a
handful of studies have already used FIR GLM to remove task activation
variance prior to estimating task FC (Al-Aidroos et al., 2012; Cordova
et al., 2016; Fair et al., 2007; Gratton et al., 2016; Norman-Haignere
et al., 2012; Sadaghiani et al., 2015; Summerfield et al., 2006), sug-
gesting these studies did not suffer from the task FC inflation effect
identified here. Some have labeled this FIR-based removal of task acti-
vation variance followed by task FC estimation “background connectiv-
ity” (Al-Aidroos et al., 2012; Cordova et al., 2016; Griffis et al., 2015a;
Norman-Haignere et al., 2012). The present results suggest “background
connectivity” and related approaches are effective in reducing (and likely
even eliminating) task FC false positives driven by fMRI task activations.

A skeptic might argue that one could reverse this argument, with task
FC being the real effect and task activations being secondary. The
computational model analyses here demonstrate this is incorrect, since
there are cases in which no true task FC is possible yet task FC is spuri-
ously detected due to task co-activation (see the “no connectivity zone” in
Fig. 3). Further, it is clear that task activation is the first-order effect



Fig. 8. Visualizing the relationship between task co-activation and task FC inflation. A) Task-state FC inflation is shown (left) by subtracting the group-mean
FIR-regressed task FC matrix from the group-mean non-regressed task FC matrix. An example task – the HCP 00Working memory" task (which involves visual stimuli
and button pressing) – is used for illustration (with no thresholding). The FC inflation values were summed (after taking the absolute value) by region to summarize
the degree to which each region showed FC inflation. This was then compared with the task-evoked activation pattern (estimated using a standard GLM with a
canonical HRF shape), showing a significant correspondence (Spearman rank rho¼ 0.49, p< 0.0001). This provides a way to visualize the degree to which co-
activation patterns are likely influencing task FC patterns. B) The group-mean task activation pattern was used to predict likely inflation of task-state FC estimates
driven by co-activations. This involved multiplying each activation with all others in a pairwise manner, converting the activation vector into a co-activation matrix.
There was a significant similarity between the co-activation matrix and the task-state FC inflation (Spearman rank rho¼ 0.60, p< 0.0001). This shows an alternative
way to visualize the degree to which co-activation patterns are likely influencing task FC patterns.
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(simple change in cross-event mean amplitude), whereas task FC is a
second-order effect building on covariance in moment-to-moment acti-
vation amplitudes. It is customary in science and statistics to account for
simpler, first-order effects prior to interpreting second-order effects, such
as interpreting ANOVA interactions only after accounting for main ef-
fects. Thus, an effect that can be explained as either a task activation or a
task FC change would be preferentially interpreted as the simpler of the
two – a task activation.

Another concern of a skeptic might be that removing task activation
variance would remove the very task FC effects s/he is interested in. Both
the model and the empirical results demonstrate that this is highly
14
unlikely. First, we found that FIR task regression did not increase the rate
of false negatives in the neural mass model. Indeed, FIR task regression
reduced the rate of false negatives, suggesting FIR task regression might
even increase the number of detected true task FC effects (rather than
simply reducing false positives) (see Fig. 4F). Second, we found that the
event-averaged task activation variance removed was only a small per-
centage (~10%) of the shared variance in the empirical fMRI data (see
Supplementary Materials), suggesting that the bulk of the effects without
activation regression was already driven by moment-to-moment variance
independent from event-averaged activations. This suggests that even
those who interpreted task FC in terms of event-averaged co-activation
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were actually observing primarily correlations of moment-to-moment
fluctuations. Notably, despite most of the variance being driven by
moment-to-moment fluctuations, we found that event-averaged activa-
tions alter task FC estimates substantially enough that many false con-
clusions are obtained without first removing event-averaged task
activation variance. These two findings – that task activations were both
a small portion of the overall variance and made a meaningful difference
to results – can be reconciled by considering that a relatively small per-
centage of false positives among thousands of functional connections
would nonetheless produce a large number of false inferences.

Taken together, these considerations suggest removal of mean task
activation variance from neural time series does not remove the covari-
ance of interest when investigating task-state FC. Yet, what might the
covariance of interest represent, mechanistically? There are several
possibilities. First, it is likely that spontaneous covariance present during
resting state is also present during task performance. Evidence for this
comes from many sources, such as the observation that neural signals are
more dominated by spontaneous than task-evoked activity during task
performance (Raichle:2010bt; Raichle and Mintun, 2006), and the
observation that the spontaneous activity during task performance has a
similar correlation structure as during resting state (Cole et al., 2014; Fox
et al., 2007, 2006; Krienen et al., 2014). This source of covariance is not
expected to differ much (if at all) from resting state, which is why we
chose to use resting state as a control condition for several analyses to
better isolate task-state-specific FC effects. Second, another likely source
of task-state covariance is extended state-related changes in neural in-
teractions, such as from activity-induced short-term (or long-term)
plasticity of synapses (Karmarkar and Dan, 2006) or sustained activity
in one area influencing others (Miller and J. D. Cohen, 2001). Finally, any
neural processes that vary in their timing and/or amplitude across events
will remain after cross-event mean evoked activity regression. Since
virtually all neural processes vary in their exact timing and/or amplitude
across events (due to the stochastic nature of neural activity), nearly
every neural process will ultimately be included (potentially with some
attenuation) after cross-event mean evoked activity regression. Among
these neural processes, those that result in non-zero covariance with
other measured neural processes (such as via long-distance neural in-
teractions) will result in a non-zero task-state FC estimate.

4.2. Limitations and opportunities for further research

As with most studies, many possible analyses related to the core
research question were not included here, providing opportunities for
future research. For instance, it could be informative to use a neuron-
level computational model to further verify the results obtained using
the neural mass model (Brette et al., 2007; Goodman, 2008). However,
our neural mass model was intentionally kept simple and abstract, with
the expectation that this abstraction will increase the probability that
results will generalize to many different possible computational models
(including highly realistic neuron-level models). The key idea is that
abstraction to neuron-like units in the neural mass model reduces the
number of assumptions by identifying key effects that are general enough
to emerge from properties present in a variety of neuron-like interactions
(e.g., across spatial scales). Despite the plausibility of this expectation it is
of course important to test this prediction using more detailed
neuron-level modeling.

There were several aspects of the computational model results that
did not completely agree with the empirical fMRI results. First, we
empirically observed more task-state FC decreases from resting state,
whereas the computational model results showed more task-state FC
increases from resting state. This likely reflects our use of task-state FC
increases from resting state (among the first 50 nodes) to select the model
parameters. Notably, in the model we saw task-state FC decreases be-
tween the first 50 and second 50 nodes, due to there being inhibitory
connections between those two network communities. This could suggest
that more inhibitory connectivity should have been included in the
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model in order to match the empirical results. Alternatively, we could
have selectedmodel parameters based onmaximal decreases in task-state
FC relative to resting state. This may have resulted, for instance, in a
higher bias parameter, equivalent to a larger amount of spontaneous
activity leading to larger resting-state correlations. This issue is related to
improving understanding of why the empirical results showed that most
functional connections are lower during task relative to rest.

Another aspect of the computational model results that was not in
complete agreement with the empirical fMRI results was the observation
that FIR task regression reduced task-state FC estimates substantially
more than basis set task regression. In the model the basis set approach
involved only 1.05% false positives, very similar to the 0.94% false
positives with the FIR approach. While the results were similar for task-
state FC vs. resting-state FC (2.49% detected effects with FIR vs. 3.01%
with basis set), our task-to-task FC comparison indicated substantially
fewer detected FC differences when using FIR (FIR: 2.89%, basis set:
12.92%). Given themore flexible fitting of HRF shape with FIR, it is likely
that FIR task regression better fit and removed the task-evoked activa-
tions than the basis set approach. It is possible that the extra flexibility of
FIR over fit the task-evoked time series, removing additional noise but
also some covariance of interest. However, the computational model
results suggest that, if anything, this extra flexibility likely reduced
(rather than increased) false negatives, potentially by removing more
noise than signals reflecting true interactions. It will nonetheless be
important for future research to quantify the degree to which FIR model
overfitting results in inflation of false negatives in empirical results.

We were able to use the computational model to conclusively show
that co-activations can induce spurious fMRI task FC by creating a “no
connectivity zone” wherein no true task FC can be possible. Ideally,
however, we would have had this sort of scenario in the empirical fMRI
dataset. Instead, the empirical fMRI analyses supported the plausibility of
task FC being inflated, with detected increases and decreases in task FC
once event-averaged task activation variance was removed. This leaves
open the possibility (however small) that removing cross-event mean
responses removed some true task FC effects. It will be important for
future studies to investigate this possibility. Notably, however, the
computational modeling results demonstrated that false negatives were
not increased (and were in fact decreased) when cross-event mean re-
sponses were removed. Again, this suggests that, if anything, removing
cross-event mean responses in turn increases the number of true task FC
effects detected (rather than decreasing them).

We focused primarily on Pearson correlation-based task FC. It will be
important for future research to test the generality of our conclusions to
all task FC approaches. We showed that the results at least generalize to
PPI analyses, suggesting the findings will likely generalize further.
Indeed, the generalization to PPI suggests the task FC inflation effect is
driven primarily by a change in covariance – the quantity underlying a
variety of association measures used for task FC analysis (such as Pearson
correlation and PPI) (Cole et al., 2016b). This is consistent with the
minimal model results (Fig. 2), which shows that the underlying task FC
inflation is driven primarily by similarity in the hemodynamic response.
Such clear similarity – which was induced by convolution with a
similar-shaped HRF – suggests this effect will generalize such that a va-
riety of task FC measures will be found to be inflated by fMRI task
co-activation.

It will be important for future research to investigate alternative ap-
proaches to correcting the task FC inflation seen here. For instance, one
promising approach is blind deconvolution (Havlicek et al., 2011), which
flexibly removes HRF shape from entire time series. This could, in theory,
correct the inflation by estimating the true neural time series separated
from the HRF. Such a result would be consistent with our finding that
task FC was only minimally inflated in the neural time series in the
computational model results. Another method that we expect to be
effective in reducing or eliminating task activation-based inflation of
fMRI task FC is the “beta series” task FC approach (Rissman et al., 2004a).
In this approach, a separate GLM parameter estimate is fit to each task
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event (with an assumed HRF shape), with Pearson correlation of the
parameter estimates (across voxels or regions) estimating task FC. In
theory, this approach estimates task FC based on event-to-event (e.g.,
trial-to-trial or block-to-block) covariance (see Fig. 1C), excluding most
of the moment-to-moment covariance that is typically used. This
approach's use of an assumed HRF shape may result in false negatives
(due to poor fit to activations in some cases), but appears unlikely to
suffer from the same task FC false positives characterized here, given that
beta series correlations isolate variation in evoked response amplitudes
from evoked response shape. This suggests that studies that used beta
series correlations are unlikely to have been influenced by the false
positives characterized here (Cisler et al., 2014; Gazzaley et al., 2004; for
example: Nee and Brown, 2012; Rissman et al., 2004b; Zanto et al.,
2011), though future research will be important for verifying this. With
regard to false negatives, Al-Aidroos et al. (2012) utilized a data-driven
approach to identifying the shape of the evoked response, isolating
event-to-event covariance without assuming a response shape. This
might be an effective approach to improve estimation of event-to-event
variance, possibly reducing false negatives in beta series analyses.
Notably, however, Al-Aidroos et al. (2012) found that
moment-to-moment covariance drove task-state FC estimates much more
strongly than event-to-event covariance. Consistent with a minimal role
for event-to-event variance, Fox et al. (2007, 2006) found that
event-to-event variance is primarily driven by spontaneous
moment-to-moment variance.

It will also be important for future research to investigate why the
neural simulation (prior to HRF convolution) had some inflated task-state
FC estimates. The inflation was quite small (a 1.99% false positive rate
with a p< 0.01 threshold), especially relative to the no-regression fMRI
results (42.58% false positive rate), but it was nonetheless higher than
expected by chance (1%, given the p< 0.01 threshold). This likely re-
flects the small amount of coincident timing induced by the simultaneous
stimulation across neural units, suggesting regression-based removal of
task-evoked non-fMRI data (Headley and Weinberger, 2013; Kar-
amzadeh et al., 2010; Mill et al., 2017) could also be useful for reducing
false positives. Supporting this possibility, investigations of task-state FC
with multi-unit recording in animal models (i.e., not involving the BOLD
signal) have tended to remove cross-event mean evoked responses prior
to estimating correlations among neural time series (termed “noise cor-
relations”) in the interest of reducing false positives (Cafaro and Rieke,
2010; M. R. Cohen and Kohn, 2011). Demonstrating the equivalence of
this issue for fMRI and non-fMRI data, we utilized a non-parametric
approach based on methods popular with spike count correlations –

involving shuffling events to estimate the contribution of confounding
stimulus-evoked covariance (Averbeck et al., 2006; Grün, 2009) – with
fMRI task-state FC estimation. These considerations make it clear that
task-timing-induced correlation inflation is likely a problem for all forms
of (direct or indirect) neural recording.

One remaining issue for the FIR GLM regression approach is that it
relies on the particular set of regressors specified, when there might be
additional task events unaccounted for. For instance, block onset and
offset events with prominent fMRI activation responses have been
identified (Dosenbach et al., 2006; Fox et al., 2005; Griffis et al., 2015b;
Visscher et al., 2003), such that a standard FIR model of an event-related
task design would fail to remove fMRI activation variance from these
prominent events. The variance from these events would likely inflate
task FC estimates. One solution would be to model these block onset and
offset events separately so as to remove this variance prior to task FC
estimation, as has been done recently (Griffis et al., 2015a). Another
solution that was successfully applied here is to design task blocks of a
given condition to have identical trial timings, then model all blocks with
a single long set of regressors (such that all consistent within-block events
would be modeled, including block onset and offsets) (Al-Aidroos et al.,
2012).

Similar issues arise from rare events with large fMRI activation re-
sponses such as error trials (Menon et al., 2001; Neta et al., 2015) or
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learning-induced changes in activations (Chein and Schneider, 2005),
which are typically not accounted for separately in GLM models. Such
events might also inflate task FC estimates, though they could also be
included in an FIR GLM to reduce this effect. Notably, such effects can be
considered sources of event-to-event variability in task main effects (see
Table S1), which should likely be accounted for prior to inferring task FC
changes. It will be important for future studies to consider these various
scenarios and determine whether they can meaningfully alter task FC
estimates. Given that most of the task FC inflation effect is caused by the
HRF shape, another possibility would be to utilize blind deconvolution
(Havlicek et al., 2011) to reduce this effect no matter its source (even
those unknown to the experimenter). Another possibility is that the
task-activation false positives arise solely from the experimental manip-
ulation (task timing) acting as a confounding third variable, implying
that internally-generated activation events (such as error trials or
learning-related activation changes) reflect the brain dynamics of interest
and therefore do not need to be removed. Notably, however, it seems
likely that a region going from high activity to baseline-level activity with
learning/practice would result in early activity having the activation
confound but not later activity (resulting in learning-related task FC false
positives when contrasting early vs. late activity). It will be important for
future studies to investigate this issue, given the ambiguity (regarding
false positives) of situations like error trials and task learning being an
interaction between experimenter-induced task timing and internal
processes.

A related issue is whether continuous task performance – such as
continuous object tracking – eliminates the task-evoked activation
confound for task-state FC estimation. Several task-state FC studies have
utilized continuous task performance (Krienen et al., 2014; Rogers et al.,
2007; Tomasi et al., 2014), potentially to avoid the rest-to-task state
transitions likely driving many of the false positives in the present study.
However, it remains unclear whether events occurring during the
continuous task constitute a task-timing confound, given that
task-evoked activity would occur in response to these events (Rogers
et al., 2007). For instance, Tomasi et al. (2014) reported a continuous
object tracking task in which two (of 10) objects were highlighted every
11.5 s. Subjects were instructed to press a button if the two highlighted
objects were the tracked objects. Rather than being fully continuous, it is
clear that these events would produce evoked activations in multiple
brain regions (e.g., visual, motor, and somatosensory cortices), very
likely creating task-timing-induced inflation of task-state FC estimates.
Nonetheless, it is possible that such non-continuous events embedded
within a continuous task would produce less of an FC inflation than, e.g.,
rest-to-task state transitions. It will be important for future studies to
explore this possibility and, more generally, assess the promise of
continuous task performance for reducing task-timing FC inflation.

5. Conclusion

We identified strong evidence that fMRI-based (and to a lesser extent,
non-fMRI-based) task FC estimates are consistently and spuriously
altered by task activations. This was shown across a minimal model, a
more realistic neural mass computational model, and empirical fMRI data
involving seven highly distinct tasks. The models and empirical fMRI
data analyses converged in suggesting that methods that remove event-
averaged task activation variance – when flexibly taking HRF shape
into account (especially FIR GLM) – are able to correct for activation-
induced task FC inflation. These results suggest prior task FC fMRI
studies that did not use FIR GLM as a preprocessing step might contain
false positives. It will therefore be important to reanalyze data when
possible, and begin using FIR GLM as a preprocessing step for task FC
analyses moving forward. It might be tempting to retain event-averaged
task activation variance in future task FC analyses given that the issue is
not as problematic for non-fMRI data. However, the observation of
inflated false positives in the “no connectivity zone” (1.99% with
p< 0.01) for the neural non-fMRI simulation data suggests this is a
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fundamental problem for task FC analysis, such that task activation
regression should be used with non-fMRI data as well. Moving forward, it
will be important to develop a deeper understanding of why event-
averaged task activation causes false positives even for non-fMRI data,
as well as identifying alternative approaches to removing event-averaged
task activations in both fMRI and non-fMRI data.
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