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The neural basis of cognition has been primarily investigated in terms 
of task-evoked activation level changes. Over the past decade a sepa-
rate focus on spontaneous (non-task-evoked) activity has challenged 
cognitive neuroscientists’ focus on task-evoked activations1–3. Due to 
the lack of experimental control of spontaneous brain activity there 
has been a strong emphasis on discovering correlations (rather than 
activation level changes) among activity time series, an approach 
termed resting-state FC. Thus the theoretical framework and meth-
odological approaches associated with cognitive task activations and 
resting-state FC are highly distinct, leading to a bifurcation in inves-
tigations of brain function.

Notably, this bifurcation mirrors the classic ‘localized’ versus 
‘distributed’ neural processing debate4–7, such that the relationship 
between localized cognitive task activations and distributed FC is 
also relevant to this broader theoretical divide in neuroscience. Here 
we sought to identify where the human brain lies with respect to 
these two extremes. We focused in particular on the role of intrinsic 
functional networks (as estimated by resting-state FC) in distrib-
uted processing. There is evidence that resting-state FC patterns  
are similar to cognitive task activation patterns8–10, but we sought 
here to quantify this relationship using a large-scale mechanistic  
construct that may help explain why this relationship exists. Critically, 
we recently found that the FC architectures across a variety of  
tasks were highly similar (80% shared variance) to the resting-
state FC architecture11. This suggests that the functional network  
architecture identified using resting-state FC is present during task 
performance and could plausibly reflect the routes by which activity  
flows during cognitive task performance. However, it remains  
unclear whether and how these FC patterns relate to cognitive task 
activation amplitudes—such as task-evoked blood oxygen level 

dependent (BOLD) functional MRI (fMRI) signal increases— 
and therefore how they relate to cognition.

We sought to answer these questions by testing whether estimated 
activity flow over resting-state FC networks can accurately predict 
cognitive task activations in held-out regions. Activity flow (often 
termed ‘information flow’) is the spreading of activation amplitudes 
between brain locations, such as task-evoked activations spreading 
from visual cortex to motor cortex in a visual–motor task. Decades 
of findings in local circuits and simulations have suggested that con-
nectivity and activations are strongly interrelated neurophysiological 
variables, with activity flow as a key linking variable12–14. However, 
little is known about how FC and cognitive task activations relate at 
the large-scale network level, for example, as measured with fMRI. 
Beginning to fill this gap, several recent studies used abstract statisti-
cal models to predict cognitive task activations based on individual 
differences in large-scale connectivity9,15,16. We sought to build 
on these findings to identify why these predictions were possible.  
This involved testing the plausibility of a (large-scale) mechanistic 
relationship between connectivity and cognitive task activations in 
terms of the concept of activity flow.

Local circuit-level studies have suggested that task-evoked acti-
vation at a given location is primarily determined by activity flow 
from other neurons17,18. Activity flow is carried (via axons) by action 
potentials modulated by synaptic strengths (among other modulators). 
Thus activity flow is a mechanism that emerges from several more 
basic mechanisms. One can conceptualize activity flow as relating 
activations (action potentials and associated local field potentials) and 
functional pathways (their tendency to influence one another via, for 
example, synaptic strengths). Applied to large-scale measures of the 
human brain, we hypothesized that aggregate activation amplitudes 
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Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its 
relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns 
are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task 
activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating  
task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allowed prediction of cognitive  
task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that 
cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow 
over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism 
explaining the relevance of resting-state FC to cognitive task activations. 
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(for example, as measured by BOLD fMRI signal) flow among brain 
regions via functional pathways (possibly reflecting, in part, aggregate 
synaptic strengths) described by FC. Thus we conceptualized activity  
flow as a linking variable between large-scale FC and cognitive  
task activations that could be used to demonstrate (and quantify) the 
functional relevance of these two measures to one another.

We tested the plausibility of this hypothesis by constructing activity 
flow mappings using FC and task activations. This involved predict-
ing the cognitive task activation level at one location based on the 
FC-weighted sums of the activations at other locations (i.e., the sum 
of activity-flow estimates; Fig. 1a). We then repeated this process 
separately for each brain region, an approach similar to leave-one-out 
cross-validation from machine learning19–21. This resulted in a whole-
brain activation pattern prediction, which could be compared with 
a given task’s actual fMRI activation pattern. A successful prediction 
(i.e., high correspondence between predicted and actual activation 
patterns) would indicate the plausibility of resting-state FC path-
ways in shaping the empirically observed activation pattern. Further,  
successful prediction across a variety of tasks and subjects would 
indicate the general plausibility of the activity flow framework at the 
large-scale network level, suggesting that resting-state FC is relevant 
to cognitive task activations due to its role in shaping task-evoked 
activity flow among brain regions.

There are several reasons why activity-flow-based prediction of 
cognitive task activations is not guaranteed to work. For instance, cog-
nitive task activations may be largely shaped by task-evoked network 
reconfigurations18,22,23, making prediction of cognitive task activa-
tions by resting-state FC ineffective. Additionally, localized processing  
independent of other brain regions could be a major driver of cog-
nitive task activations in any given brain region, such that activity  
flow is largely irrelevant to localized cognitive task activations. 
Indeed, many cognitive task activations have been interpreted under 
this assumption7, such as task-evoked activations within dorsolateral 
prefrontal cortex during working memory maintenance24. Even with 
strong evidence that activity flow shapes activations at the local circuit 
level12–14, this is not guaranteed at the large-scale network level since 
local processing (for example, within-region activity flow) is likely to 
be at least partially independent of the large-scale activity flow into 
a region. The spatiotemporal resolution of fMRI signals is several 
orders of magnitude lower than neuron-level events, leaving room 
for extensive local processing to occur independently of large-scale 
activity flow into and out of a given region.

The activity flow mapping approach is based on the local circuit-
level findings described above. However, like recent models of activity- 
spreading dynamics25,26, it is not meant to be a realistic simulation 
of neuronal dynamics but rather a tool for quantifying (and mak-
ing inferences about) brain activity relationships. We see the present 
study as a precursor to more complex approaches that incorporate 
biophysical models of neuronal communication27,28 to improve acti-
vation pattern predictions further. Here we sought to make as few  
assumptions as possible regarding the biophysical basis of the FC–
activation relationship by using the simplest activity flow mapping 
approach possible: the FC-weighted sum of activations. This allowed 
us to make straightforward inferences regarding the relationship 
between FC and cognitive task activations, which future work can 
refine using more elaborate models of neuronal communication.

We began by validating the activity flow mapping procedure with 
a simple computational model of large-scale neural interactions. We 
then applied the activity flow mapping approach to empirical fMRI 
data acquired as healthy adult human participants (n = 100) rested 
and performed a variety of tasks. We used activity flow mapping to test 

our primary hypothesis: cognitive task activations can be predicted 
in held-out brain regions (and held-out individuals) via estimated 
activity flow over resting-state FC networks. This would suggest that 
task-evoked activity flow over intrinsic networks (i.e., the spread of 
activation amplitudes between regions) acts as a large-scale mecha-
nism helping to explain the functional relevance of resting-state FC 
to cognitive task activations.

RESULTS
Computational validation and identification of factors 
contributing to cognitive task activations
Previous research has shown a statistical relationship between  
resting-state FC and cognitive task activations8,9 but not why this 
relationship exists. We recently found that resting-state FC patterns 
are present during cognitive task performance (80% shared variance 
in whole-brain FC patterns between rest and task)11. This suggests  
that resting-state FC might describe activity flow among brain regions 
even during task performance. Here we tested this possibility in the 
context of task-evoked activation amplitudes, using activity flow 
among brain regions as a linking variable between resting-state FC  
and task-evoked activations. This involved modeling activity flow  
as task activation amplitudes (standard fMRI general linear model 
estimates) multiplied by FC strengths (standard Pearson correla-
tions) between brain regions (Fig. 1a). Standard measures were used 
to maximally relate to the existing resting-state FC and cognitive task 
activation literatures. We hypothesized that this would allow us to 
predict cognitive task activations in held-out brain regions based on 
resting-state FC patterns.

We began by validating this activity flow mapping procedure with 
a simple computational model of large-scale neural interactions. The 
model was kept simple to reduce the number of assumptions regarding 
underlying biophysical detail (Online Methods). Interactions among 
300 brain regions were simulated along with task-evoked activations 
(Fig. 1b). Knowing the ground truth connectivity and activations in 
the model (since we defined these parameters ourselves) allowed us 
to validate the activity flow mapping procedure.

We constructed the model to have three structural network com-
munities, with the first community split into two ‘functional’ com-
munities via modulation of synaptic strengths (Fig. 1c). This was of 
particular interest here given the potential for resting-state FC fMRI 
(unlike, for example, diffusion-weighted MRI) to detect the aggre-
gate effects of synaptic strengths that are known to modify activity 
flow over structural (axonal) connections in local circuits12. Note that 
although we focused on synaptic strengths, there are other modulators 
of FC, such as large-scale changes in neurotransmitter concentrations. 
We then ran the model with spontaneous activity (Gaussian random 
values) in each unit while simulating fMRI data collection (Online 
Methods). We then computed Pearson correlations among all of the 
time series to produce simulated resting-state FC data (Fig. 1d).

We next simulated task-evoked activations by injecting stimulation 
(2 min of stimulation in 3 blocks) into five neighboring regions at a 
time. Six ‘tasks’ were simulated by changing the stimulated regions 
(Fig. 1e). We simulated fMRI data collection as with the ‘rest’ data, 
followed by application of a standard fMRI general linear model 
to obtain activation amplitude estimates for each simulated region 
(Fig. 1e). We then implemented the activity flow mapping algorithm, 
assessing its ability to predict task activations in held-out regions 
based on resting-state FC. We found that activity flow mapping was 
successful in recovering the original task-evoked activation pat-
tern (across-task average r = 0.56, P < 0.00001; cross-task average 
Spearman’s rank correlation ρ = 0.51, P < 0.00001).
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To ensure robustness of this result we repeated the entire simula-
tion procedure 4,000 times (Online Methods). Over these iterations 
we varied a global coupling parameter to assess the role of aggregate 
synaptic strengths (and/or other potential modulators of neuronal 
communication), along with varying a local processing parameter 
to assess the role of nondistributed (local) activity. Global coupling 
was defined as a constant that linearly scaled all synaptic strengths, 
while local processing was defined as a constant that linearly scaled 
all self-connection (recurrent connection) strengths. We found that 

activity flow mapping worked to the extent that global coupling was 
high and local processing was low (Fig. 1b). The sensitivity of these 
results to the local–distributed processing relationship suggested that 
empirical assessment of activity flow mapping with real fMRI data 
would be nontrivial, in the sense that it would only be effective if the 
empirical data displayed certain properties. Further, these results sug-
gested that activity flow mapping could provide evidence regarding 
the relative distributed versus localized processing that occurs in the 
human brain during cognitive task performance.

Activity flow mapping with empirical fMRI data
We next applied the activity flow mapping approach to empirical 
fMRI data, testing the hypothesis that cognitive task activations 
could be predicted in held-out brain regions via estimated activity 
flow over resting-state FC networks. This involved applying activity 
flow mapping to a Human Connectome Project data set involving rest 
and seven highly distinct tasks29. These tasks included an ‘emotional’ 
processing task, a ‘gambling’ incentive processing task, an auditory 
‘language’ task involving stories and math problems, a simple ‘motor’ 
task (involving moving fingers, toes, and tongue), a ‘social’ cognition 
task, a ‘relational reasoning’ task, and an ‘N-back’ working memory 
task. A standard set of functionally defined brain regions22,30 (Fig. 2a) 
was used along with standard Pearson correlation-based FC measures, 
calculated pairwise across all regions (Fig. 2b). The predicted activa-
tion pattern matrix was highly similar to the actual activation pattern 
matrix: cross-task average r = 0.48, t99 = 39.29, P < 0.00001. The r-
values were similar for each of the seven tasks individually: r = 0.42 
(emotional), r = 0.49 (gambling), r = 0.46 (language), r = 0.53 (motor), 
r = 0.49 (reasoning), r = 0.50 (social) and r = 0.45 (N-back).

These correlations were higher when comparisons were computed 
after averaging the predicted and actual activation patterns across 
subjects (cross-task average r = 0.66, 44% variance explained), likely 
due to an improved signal-to-noise ratio from aggregating more 
data before comparison (Fig. 2c). This was true of each of the seven 
tasks individually: r = 0.67 (emotional), r = 0.66 (gambling), r = 0.66  
(language), r = 0.65 (motor), r = 0.68 (reasoning), r = 0.65 (social) 
and r = 0.65 (N-back). Note that these average-then-compare results 
likely better reflect the true effect sizes (due to better signal-to-noise 
ratios), while the compare-then-average results better demonstrate 
the consistency of the effects across subjects.

Results were similar when using global signal regression during 
preprocessing (average r = 0.50 across the seven tasks, t99 = 45.32, 
P < 0.00001). Further, it should be noted that all seven tasks used 
block designs and that future research investigating the efficacy of 
activity flow mapping with event-related relative to block designs 
will be important. Also note that similarity was high between tasks 
in the actual activation patterns relative to rest (Supplementary  
Fig. 1a), consistent with previous meta-analyses31–34 and suggest-
ing the existence of a ‘task-general’ activation pattern. We therefore 
conceptualized a given task-activation pattern as being composed of 
a task-general pattern and a task-specific pattern (Supplementary  
Fig. 1b). We applied activity flow mapping on isolated task-specific 
activations (Online Methods), allowing us to identify the role of 
activity flow in shaping task-specific activations (for example, motor  
network activations during the motor task).

These results demonstrate the plausibility of activity flow as a large-
scale linking mechanism between resting-state FC and activations 
across a variety of distinct cognitive tasks. Further, these results sug-
gest a strong role for large-scale distributed (rather than primarily 
local) processing in the human brain, establishing the relevance of 
resting-state FC to understanding cognitive task activations.
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Figure 1 Activity flow mapping over resting-state FC networks allows 
prediction of held-out task activations. (a) Diagram showing our 
approach—linking resting-state FC (red lines) to task activations (circles) 
to assess the relevance of FC to cognitive task activations—to predicting 
a single region’s activation amplitude for a single task. The to-be-
predicted region’s (purple circle) activation amplitude is held out from 
the prediction calculation. (b) Whole-brain predicted-to-actual Pearson 
correlations (r-values) for distinct model parameters are shown. The 
success of activity flow mapping depended on the relative degree of local 
(within-region, recurrent) vs. distributed (cross-region) processing.  
(c) Three structural connectivity graph communities (blocks along diagonal)  
were created, with the first split into two communities via synaptic 
strength modifications. (d) Resting-state FC (Pearson correlation) was 
computed based on simulated time series using the computational model, 
revealing a strong correspondence with the underlying synaptic strengths. 
(Note that other factors not modeled here likely also influence resting-
state FC.) Global coupling and local processing parameters were set to 1.0 
for this example. (e) Simulated task-evoked activations were produced by 
stimulating (red arrows) groups of 5 nearby units in 6 separate simulated 
‘tasks’. Activity flow mapping produced above-chance recovery (mean 
cross-task Pearson correlation r = 0.56, t298 = 11.7, P < 0.00001) of the 
actual activations using the resting-state FC matrix shown in d.
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Improving activity flow mapping predictions using multiple 
regression
We used Pearson correlations to this point due to their prominent role 
in the resting-state FC fMRI literature. However, multiple regression is 
a standard measure for making predictions of a single variable based 
on many other variables, which was the goal of the activity flow map-
ping approach. We reasoned that this might produce better predictions 
since, relative to correlation, multiple regression would reflect more 
direct FC relationships between regions (accounting for, for example, 
signals passing through a third region). Further, unlike correlation 
(which is an abstract statistical measure), multiple regression would 
scale FC values to the same units as activity in each to-be-predicted 
region during rest, likely producing more accurately scaled predic-
tions. We therefore adapted the activity flow mapping approach to 
use multiple regression in place of Pearson correlation. This involved 
calculating resting-state FC using a standard linear regression model 
(i.e., a general linear model) for each region, with all other regions as 
predictor variables. Each regression coefficient in the resulting FC 
matrix represents how much a given source region’s activity must be 

scaled (statistically controlling for all other source regions) to match 
the activity amplitude of a given target region during resting state.

Using this new FC matrix substantially improved activity flow map-
ping predictions: cross-task average r = 0.69, t99 = 46.18, P < 0.00001. 
The r-values were similar for each of the seven tasks individually:  
r = 0.61 (emotional), r = 0.72 (gambling), r = 0.64 (language), r = 0.73 
(motor), r = 0.72 (reasoning), r = 0.75 (social) and r = 0.64 (N-back). 
The average correlation was higher when comparisons were com-
puted after averaging predicted and actual activation patterns across 
subjects (cross-task average r = 0.91; 83% of variance), likely due to 
improved signal-to-noise ratios (Fig. 3). This was true of each of the 
seven tasks individually: r = 0.86 (emotional), r = 0.93 (gambling), 
r = 0.88 (language), r = 0.93 (motor), r = 0.94 (reasoning), r = 0.92 
(social) and r = 0.86 (N-back).

These results demonstrate the utility of using multiple regression 
rather than Pearson correlation in the context of activity flow map-
ping. Further, the high correlations obtained further support the 
possibility that activity flow over intrinsic networks (as estimated by 
resting-state FC) strongly shapes cognitive task activations.
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Figure 2 Activity flow mapping predicts cognitive task activations with empirical fMRI data. (a) We used a standard set of functionally defined regions 
of interest with associated resting-state FC network assignments30. (b) The cross-subject average resting-state FC matrix (Pearson correlations) among 
the 264 regions shown in a. Results were similar when using global signal regression during preprocessing (Online Methods). Colors in a and b indicate 
networks as named in c. (c) Pearson correlation-based resting-state FC was used to predict activation patterns across the 7 tasks (mean activity 
amplitude of each region for each task). Cross-task activation similarities were removed to emphasize task-specific activations (Supplementary Fig. 1). 
The high correspondence between predicted (left) and actual (right) activation patterns (average prediction accuracies r = 0.66, based on  
cross-subject mean predicted and actual activations) suggests resting-state FC shapes activity flow in task contexts.
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Additional validation of the activity flow mapping approach
The activity flow mapping approach assumes that the observed pre-
diction accuracies are dependent on the particular organization of 
the FC network architecture. To test this assumption we randomly 
permuted FC patterns across regions (10,000 permutations; Online 
Methods). We found that the original result was highly dependent 
on each region’s particular FC pattern. Of the 10,000 permutations, 
the highest Pearson correlation r-value between predicted and actual 
activity was r = 0.024. This indicates that the nonparametric per-
mutation test P-value for the original multiple-regression FC result  
(r = 0.69) was P < 0.0001. Supplementary Figure 2a depicts a pre-
diction based on an example permutation, while Supplementary  
Figure 2b visually illustrates the null distribution created for the per-
mutation test. Similar results were obtained with Pearson correlation 
FC (highest value from 10,000 permutations: r = −0.009).

Another assumption of the activity flow mapping approach is that—
outside the hypothesized activity flow mechanism—resting-state FC 
and task activations are largely independent. Such independence 
is likely because the resting-state fMRI data were collected during 
separate runs from the task fMRI data. However, there may be vas-
culature-based or other fMRI-related confounds consistent across 
both the resting-state and task runs that link resting-state FC and 
task activations. If such confounds exist (for example, effects of dif-
ferential signal-to-noise ratio across regions), they would likely result 
in region-to-region correlations in activation amplitudes across rest 
and task. We therefore tested for correlations between task-specific 
activation amplitudes and resting-state amplitude of low-frequency  
fluctuation values, a standard measure of resting-state activation 
amplitudes. We found no region-to-region correlation between rest-
ing-state and task-specific activation amplitudes: cross-task aver-
age r = −0.005, t99 = −1.30, P = 0.20. This suggested independence 
of the resting-state and task activation amplitudes at least as far as  
task-specific activations are concerned.

Another possibility is that regions with overall stronger resting-state 
FC tend to have higher task-activation amplitudes. While not strictly 
incompatible with the proposed activity-flow network mechanism, 
this could create a situation in which resting-state FC could predict 
activation amplitudes without the activity flow mapping procedure. 
We calculated the overall (sum) resting-state multiple-regression 
FC for each region and tested for a correlation with task-activation 
amplitudes. Note that this is equivalent to running the activity flow 
mapping procedure with resting-state FC values alone (no task- 
activation amplitudes). We found that there was only a very small 
(but significant) negative correlation between summed resting-
state FC and task-specific activation amplitudes: average r = −0.01,  
t99 = −4.46, P = 0.00002. This demonstrated that increased resting-
state FC did not correspond with increased task-specific activations, 
meaning this effect could not have driven the observed activity flow 
mapping results. Together these results further support the assump-
tions underlying the activity flow mapping approach.

Voxelwise activity flow with empirical fMRI data
We next sought to test whether resting-state FC describes the routes of 
task-evoked activity flow at a finer-grained scale, using voxels instead 
of regions. We also performed this analysis to gain a more general 
assessment of the accuracy of the activity-flow mapping approach (for 
example, without assuming a set of a priori defined brain regions). 
Note that we excluded FC with all voxels within the same region as 
(and voxels within 9 mm of) the to-be-predicted voxel to reduce 
the chance of spatial autocorrelations35 contributing to prediction  
accuracies (Online Methods).

We found that whole-brain voxelwise activation patterns were  
predicted well above chance: cross-task average r = 0.63, t99 = 40.68,  
P < 0.00001. The r-values were similar for each of the seven tasks indi-
vidually: r = 0.54 (emotional), r = 0.65 (gambling), r = 0.57 (language),  
r = 0.67 (motor), r = 0.66 (reasoning), r = 0.72 (social) and r = 0.58 
(N-back). The average correlation was higher when comparisons were 
computed after averaging the predicted and actual activation patterns 
across subjects (cross-task average r = 0.92; 85% of variance; Fig. 4 and 
Supplementary Fig. 4). This was likely due to an improved signal-to-
noise ratio from averaging more data. Results were similar for each of 
the seven tasks individually: r = 0.84 (emotional), r = 0.93 (gambling),  
r = 0.90 (language), r = 0.94 (motor), r = 0.95 (reasoning), r = 0.94 
(social) and r = 0.86 (N-back). While these predictions are highly accu-
rate, even with 90% of the variance (r = 0.95; r2 = 0.90) being explained 
for the reasoning task (Fig. 4b), there appear to be meaningful differ-
ences in the remaining 10% of variance, such as a lack of primary motor 
cortex activation for the reasoning task. This suggests that, despite the 
strong performance of resting-state FC-based activity-flow mapping, 
there may be important roles for task-evoked FC and/or local within-
voxel processing that does not flow to other brain regions.
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Figure 3 Using multiple regression to estimate resting-state FC increases 
prediction accuracy. (a) We applied standard multiple linear regression to 
estimate each region’s FC in the same simulated data shown in Figure 1. 
This increased prediction accuracy from r = 0.56 (with Pearson correlation 
FC) to r = 0.71 in this example. (b) Multiple-regression FC matrix from 
the real resting-state fMRI data. The cross-subject average regression 
coefficient matrix is shown. Some community structure was apparent, 
despite the increased sparseness relative to when Pearson correlation was 
used (Fig. 2b). Colors indicate resting-state networks as given in c.  
(c) Prediction accuracy was also increased with real fMRI data: from an 
average of r = 0.66 (using Pearson correlation FC) to an average of r = 0.91 
(with multiple-regression FC); a 39% increase in linear variance explained.
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Note that, unlike in the region-wise analysis above, it was sta-
tistically impossible to include all predictors (voxels) for all to-be- 
predicted voxels. This is because multiple regression requires more 
data points than predictors. We used principal components regression 
to get around this limitation (Online Methods). However, because 
not all resting-state fMRI time series variance was included in the 
predictions, these may be underestimates of the voxelwise predictions  
possible with more data. The voxelwise activity flow mapping pro-
cedure is illustrated in Figure 5, as applied to predicting activation 
in a single region during the motor task. An anterior prefrontal 
cortex region in the cingulo-opercular network (Fig. 2a) was cho-
sen for illustration since neither anterior prefrontal cortex nor the 
cingulo-opercular network are typically considered in the literature 
in the context of such simple motor tasks36,37. The FC and activity  
flow with primary motor cortex in Figure 5 provide an example 
of the additional insight that can be gained using the activity-flow  
approach. Overall, these results further demonstrate the plausibil-
ity of the activity-flow network mechanism in shaping cognitive  
task activations.

Quantification of prediction accuracies by network
We found that overall prediction accuracy was high across all tasks, but 
we wanted to also quantify prediction accuracy for each network sepa-
rately. We used the same approach as our main results (task-specific  
activations predicted using multiple-regression FC, calculated after 
averaging across subjects), but predicted-to-actual correlations were 
calculated for each network separately. We found that correlations for 
all networks were high (r > 0.8 on average), though there was some 
variability. The cross-task average predicted-to-actual correlations for 

each network were: r = 0.89 (motor–tactile (hand)), r = 0.91 (motor–
tactile (mouth)), r = 0.95 (cingulo-opercular), r = 0.93 (auditory),  
r = 0.92 (default mode), r = 0.98 (memory retrieval), r = 0.93 (visual),  
r = 0.93 (frontoparietal), r = 0.93 (salience), r = 0.67 (subcortical), r = 0.94  
(ventral attention), r = 0.96 (dorsal attention) and r = 0.84 (cerebellum). 
These correlations were also calculated for each task separately  
(Supplementary Fig. 3a). Note that networks showing poor accuracy 
for individual tasks were accurate overall when predictions across all 
tasks were considered (Supplementary Fig. 3b).

These results illustrate that effects were similar across cortical 
networks but tended to be lower for subcortical regions. It may be 
illuminating for future studies to investigate this as a possible dif-
ference between cortical and subcortical activity flow mechanisms.  
Note, however, that the 32-channel MRI head coil and multiband 
fMRI sequence used here are thought to reduce signal-to-noise  
for subcortical regions relative to cortical regions29, possibly leading 
to the observed effect.

Predicting individual differences in cognitive task activations
We next tested whether activity flow mapping can be used to predict 
individual differences in cognitive task activations based on indi-
vidual differences in resting-state FC. A recent study was able to do 
this using an abstract statistical model trained to directly associate 
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Using resting-state FC
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Motor task
Actual activation pattern

0 3–3

fMRI activation amplitude
(z-normalized)

r = 0.94
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Figure 4 Predicting voxelwise activation patterns. We used multiple-
regression-based resting-state FC with a voxelwise activity flow mapping 
approach, again finding above-chance prediction accuracy across the  
7 tasks. Activity flow mapping with the (a) motor and reasoning (b) relational  
tasks are illustrated. Voxels within the same region and within 9 mm of that 
region were excluded from prediction calculations to reduce the influence 
of spatial autocorrelations (Online Methods). Also, due to fewer time 
points than predictors, only a subset of the data could be used to compute 
voxelwise multiple-regression FC (Online Methods). See Supplementary 
Figure 4 for predicted and actual activation maps for all 7 tasks.
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Figure 5 Illustration of activity flow mapping of single region. Voxelwise 
prediction of a single region is illustrated. (a) The region of interest 
was defined based on positive activation during the motor task. The 
same procedure was used for prediction of voxels (Fig. 4). (b) Multiple-
regression-based resting-state FC using the region of interest’s average 
time series as a seed. The average across all 100 subjects is shown. 
(c) Activity flow estimates to and from the region of interest during 
the motor task. Small values indicate that the prediction is based on a 
highly distributed activation pattern, with each activity flow estimate 
contributing only a small amount (full range: −0.0095 to 0.015). The 
(infrequent) occurrence of negative FC multiplied by negative activations 
leading to positive activity flow estimates may reflect disinhibition or 
inhibitory activity flow from (rather than to) the to-be-predicted region. 
While not exact, the prediction is in the same range as the region of 
interest’s actual activation amplitude during the motor task. The whole-
brain motor task activation amplitude range was −23.6 to 16.3.
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(within small patches of cortex) resting-state FC values with cognitive 
task activations9. We postulated that if activity flow is a large-scale 
mechanism linking resting-state FC to cognitive task activations, then 
activity flow mapping would also produce above-chance prediction 
of held-out individual subjects. Notably, unlike in the previous study, 
activity flow mapping does not involve training an abstract statistical 
model associating resting-state FC with task activations, thus poten-
tially demonstrating a more direct relationship between resting-state 
FC and cognitive task activations.

In addition to holding out each region one at a time, for this analy-
sis we also held out activations from each subject one at a time. This 
allowed us to use the held-out individual’s resting-state FC, in com-
bination with other subjects’ mean task activations, to predict the 
held-out individual’s cognitive task activations (Online Methods). The 
predicted task-specific activation patterns were again above chance on 
average: r = 0.45, t99 = 25.15, P < 0.00001. The r-values were similar 
for each of the seven tasks individually: r = 0.23 (emotional), r = 0.48 
(gambling), r = 0.37 (language), r = 0.54 (motor), r = 0.52 (reasoning), 
r = 0.58 (social) and r = 0.40 (N-back). These results demonstrate that 
resting-state FC describes individualized routes of activity flow, which 
shape individual differences in cognitive task activations.

It is possible that activation predictions in the held-out individuals 
were above chance due to the general similarity of activations across 
subjects, rather than due to prediction of individual differences. 
Consistent with this, cross-subject cognitive task activation pattern 
similarity was r = 0.20 on average. We therefore used regression to 
isolate individual differences in resting-state FC and actual activa-
tion patterns (Online Methods), reducing cross-subject cognitive task 
activation pattern similarity to r = −0.01 on average. This revealed 
that individual differences in cognitive task activations could be pre-
dicted based on individual differences in resting-state FC: cross-task 
average r = 0.59, t99 = 25.15, P < 0.00001. The r-values were similar 
for each of the seven tasks individually: r = 0.66 (emotional), r = 0.56 
(gambling), r = 0.59 (language), r = 0.54 (motor), r = 0.65 (reason-
ing), r = 0.58 (social) and r = 0.51 (N-back). These results suggest that 
resting-state FC describes individualized routes of activity flow that 
shape individual differences in cognitive task activations.

DISCUSSION
Recent studies have shown a strong statistical relationship between 
resting-state FC and cognitive task activations. This was shown using 
meta-analytic data from thousands of fMRI experiments8 and in indi-
vidual subjects performing specific tasks9. However, it has remained 
unclear how or why this relationship exists. Understanding this rela-
tionship in a more mechanistic manner would provide critical insight 
into the relevance of resting-state FC for cognitive task activations. 
This would also provide insight into the factors that shape cognitive 
task activations, a central goal of cognitive neuroscience. Based on our 
recent work showing that resting-state FC patterns are present during 
task performance11, we expected that resting-state FC may describe 
the routes of activity flow even during task performance. Building on 
this, we tested the possibility that activity flow is a linking (large-scale) 
mechanism between resting-state FC and cognitive task activations, 
potentially explaining the statistical relationship previously observed 
between these two constructs.

We quantified activity flow as the FC-weighted sum of activations 
in other brain regions (Fig. 1a). Using empirical fMRI data, we found 
that estimating activity flow across resting-state FC networks allowed 
prediction of cognitive task activations (Fig. 2). This was true when 
holding out each brain region (or voxel) but also when holding out 
each individual subject. This demonstrated that individual differences 

in intrinsic network activity flow can help explain individual differ-
ences in cognitive task activations. This may have application in the 
future for predicting and understanding cognitive task activations 
in patients who cannot perform a given task (for example, due to 
lack of consciousness or cognitive disability) or who perform the task 
poorly. This addresses a key issue in the study of cognitive disability:  
We wish to investigate patients with cognitive disabilities using the 
tasks they have difficulty with, but by definition they will be perform-
ing those tasks differently than healthy control subjects. This leads 
to ‘performance confounds’, in which any observed change in cogni-
tive task activations could be either a cause or a consequence of the 
disrupted cognitive task performance. Use of activity flow mapping 
(and related approaches9,15,16,38–40) may allow us to get around such 
confounds, since we can now understand individual differences in 
cognitive task activations in terms of connectivity variables estimated 
independently of task performance.

Several recent studies also sought to identify the relationship 
between individual subject connectivity and cognitive task (as well 
as brain-stimulation-based41) activations9,15,16. These studies found 
that functional and structural connectivity patterns, when combined 
with a statistical model fit to separate data, could be used to predict 
individual differences in cognitive task activations. These studies 
provided further evidence of a relationship between large-scale con-
nectivity and cognitive activations. Unlike these studies, we used a 
large-scale mechanistic construct—activity flow—to link connectivity 
and cognitive task activity without use of a statistical model trained 
to relate connectivity to activations. This allowed us to infer a more 
direct relationship between connectivity and task activations and to 
link this relationship to a potential underlying large-scale mechanism 
(activity flow, likely shaped in part by aggregate synaptic connectivity 
strengths; Fig. 1d). Linking to mechanistic constructs (large-scale or 
otherwise) is important for theoretical advances in neuroscience. In 
this case, linking to activity flow supports an explanation for the sta-
tistical relationships observed in these previous studies. Future studies 
may build on these findings with manipulations of FC and activity 
flow to make more causal inferences about these constructs. Further, 
it may be useful to investigate the relationship between these con-
structs using more direct measures of neural activity such as multiunit 
recording or magnetoencephalography, given that (while strong42,43) 
the link between neural activity and BOLD fMRI is indirect.

We began by using a simple FC measure (Pearson correlation) to 
model activity flow. We did this primarily to make minimal assump-
tions regarding the true nature of brain interactions and because 
Pearson correlations are widely used for FC estimation in the lit-
erature. It is noteworthy that we observed such high accuracy in our 
predictions (over 40% of variance explained; Fig. 2) despite using 
FC estimates that lacked information about both the direction of 
influence and whether an influence between nodes was indirect (i.e., 
effective connectivity)44. We found that when we used multiple lin-
ear regression as an FC measure, activity flow mapping accuracies 
increased (Fig. 3). Unlike Pearson correlation, this measure isolates  
unique influences between regions. Just as we found that using 
multiple-regression FC increased the activation-pattern prediction 
accuracy, so we expect that adding additional (or more accurate) 
information—perhaps using more sophisticated effective con-
nectivity methods45–47—will improve prediction accuracy further. 
This would provide evidence for the importance of these factors in 
shaping cognitive task activations. More generally, this illustrates 
a benefit of the activity flow framework: the accuracy of predicted  
activation patterns can be evidence for the veracity of any connectivity 
properties of interest.
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The large-scale aggregate activity-flow construct tested here was 
derived from well-known mechanisms for activity flow at the local 
circuit level. The key local mechanism allowing for activity flow 
among neurons is the propagation of action potentials along axons. 
The demonstration of large-scale activity flow here is nontrivial given 
that action potentials occur at the level of individual neurons and on 
the order of tens of milliseconds, while BOLD fMRI signals involve 
hundreds of thousands of neurons over seconds. This suggests that 
aggregating many instances of local activity flow via action potentials 
results in self-similar48 large-scale properties. This is consistent with 
the computational model results (Fig. 1), which demonstrated that 
activity flow occurring on the order of milliseconds can nonethe-
less be estimated accurately using simulated fMRI signals. However,  
it will be important to investigate activity flow at other spatiotemporal 
scales. Most crucially, it will be important to increase temporal resolu-
tion to observe the time-lagged propagation of signals between brain 
regions, allowing for clear directional activity-flow estimates. Note 
that the primary reason we did not take temporal lags into account is 
the uncertainty of precise BOLD response timings relative to under-
lying neural response timings across brain regions and voxels47,49. 
Further progress characterizing BOLD signal timing and advances in 
spatial coverage and localization for high-temporal-resolution meth-
ods will likely lead to improved estimates of activity flow.

It is important to consider our approach in the context of other 
modeling frameworks. The activity flow approach is analogous to 
a model of task activation at time t + 1 based on the product of the 
activation at time t and the connectivity matrix. As such, this is a 
single-time-step prediction based on the simple linear model used 
in previous studies50, with one important change: the connectivity 
matrix we used is based on FC rather than structural connectivity. 
It will be interesting in future to extend our model to include con-
siderations of nonlinear dynamics, such as those implemented in the 
Virtual Brain project28.

To conclude, it is well established that there is a strong statistical 
relationship between resting-state FC and cognitive task activations8, 
yet the reason for this relationship has remained unclear. We provided 
evidence for a large-scale mechanism involving activity flow over 
intrinsic networks (described by resting-state FC) shaping cognitive 
task activations. This suggests that observed cognitive task activations 
should not be interpreted simply in terms of localized processing but 
should also consider distributed processing in the form of activity 
flow across intrinsic networks. Further, these results suggest strong 
relevance of resting-state FC for the task activations that produce 
cognition. We expect that these insights and the activity flow mapping 
procedure introduced here will facilitate future investigation into the 
functional relevance of resting-state FC, the factors that influence 
cognitive task activations and the balance of large-scale distributed 
versus localized processing in the human brain.

Data availability. The MRI data set analyzed as part of the current 
study is available in the Human Connectome Project’s ConnectomeDB 
repository (https://db.humanconnectome.org) under the identifiers 
‘WU-Minn HCP Data’ and ‘100 Unrelated Subjects’.

METhODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Activity flow mapping. We developed a method to quantify the relationship 
between FC and task-activation patterns (Fig. 1a). This involved estimating net 
input to each target region by multiplying each other brain region’s task-related 
activation amplitude (analogous to the amount of neural activity) by its FC with 
the target region (analogous to aggregate synaptic strength): 

P A Fj
i j V

i ij=
≠ ∈
∑

where Pj is the predicted mean activation for region j in a given task, Ai is the 
actual mean activation for region i in a given task (a beta value estimated using 
a general linear model), i indexes all brain regions (vector V) with the exception 
of region j, and Fij is the FC estimate between region i and region j (the Fisher 
z-transformed Pearson correlation or multiple regression estimate of the regions’ 
time-series). This algorithm results in a vector predicting the pattern of mean 
activations across regions for a given task. Note that when FC is used (rather 
than directed/effective connectivity) this approach estimates total bidirectional 
(and/or indirect) activity flow.

Activation amplitudes were z-normalized for each task separately via sub-
tracting each activation amplitude from the cross-region mean and dividing by 
the cross-region s.d. This facilitated a focus on the activation patterns (rather 
than absolute activation levels) across tasks. Prediction accuracy was assessed 
using Pearson correlation between the predicted activation values and the actual 
activation values (i.e., the actual activations for each region and task). This was 
done for each task separately and (unless noted otherwise) each subject sepa-
rately. Each correlation value was Fisher’s z-transformed before averaging, then 
converted back to a Pearson correlation for reporting purposes. Statistical sig-
nificance tests were conducted using t-tests (two-sided, one-sample) of Fisher’s 
z-transformed Pearson correlations, facilitating the ability to infer generaliza-
tion of results across subjects (rather than just on cross-subject mean patterns). 
The group distributions of these Fisher’s z-transformed Pearson correlations 
were approximately normally distributed. When P-values were computed based 
on non-normally distributed data we also reported a P-value based on the 
Spearman’s rank correlation. Note that predicted activation patterns and actual 
activation patterns were averaged across subjects before comparison for a sub-
set of analyses. This was done primarily to increase the signal-to-noise ratio  
via averaging of more data, likely providing more accurate effect size estimates 
(i.e., percent variance explained).

computational modeling. We used a simple computational model of large-scale 
neural interaction to help validate key aspects of activity flow mapping. We sought 
the simplest computational model possible to reduce the number of biophysical 
assumptions and improve the likely generality of our results.

The model consists of 300 abstract units, each representing a brain region. The 
units interact via a standard spiking rate code passed via predefined structural 
(and synaptic) connectivity51. Activity at a given node is determined using a 
standard sigmoid function on the mean of the input activities. Note that the sig-
moid function introduces a nonlinearity to the interactions among units that is 
similar to aggregate nonlinearity from neuronal action potentials52. Specifically, 
the model used the following equation to determine activity in a given unit at a 
given time step: 
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i i
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where wji refers to the synaptic weight from region i to j and xj refers to the activ-
ity level at region j. Biasi is the bias of region i, but for this model this is set to 0. 
τi is the time constant for region i, and is set to 1 time step for all regions. fi is a 
standard sigmoid function.

The model’s network connectivity was constructed by first defining a ran-
dom set of structural connections (15% density), then creating three graph 
communities/subnetworks by randomly connecting each node to ten other nodes 
within the same community. Structural connections were defined as nonzero 
connection weights (all set to the same value of 1.0), while synaptic connections 
were modifications on the initial connection weight. Normally distributed random 

synaptic weights were added to all structural connections, scaled to be quite small 
(mean of 0 and s.d. of 0.001). Finally, synaptic weights were used to split the first 
structural connectivity community into two ‘functional’ communities. Specifically, 
the synaptic weights were increased (multiplied by 1.5) within the first half of the 
first graph community, while synaptic weights for the second half of that com-
munity were also increased (multiplied by 1.5). Also, synaptic weights between 
these communities were reduced (multiplied by 0.5). These modifications were 
designed to test the impact of synaptic weights on simulated activity flow.

Spontaneous activity for each node was added as normally distributed random 
values (mean = 0, s.d. = 1) every time step (100 ms). An autocorrelation factor of 
0.10 was used to maintain some activity across multiple time steps. We simulated 
20,000 time steps using purely spontaneous activity (resting state data) and, sepa-
rately, using spontaneous with task-evoked activity (task data). Task-evoked activ-
ity was implemented as increased activity (normally distributed random values 
centered at 1 with an s.d. of 0.5) added linearly to ongoing spontaneous activity.  
Activity consisted of three blocks of 2,000 timepoints each, with each block 
separated by 3,000 time points. Each task was simulated by adding task-evoked 
activity to six separate groups of five regions simultaneously (two per struc-
tural graph community). fMRI data collection was simulated by convolving the  
simulated time series with the SPM canonical hemodynamic response function, 
then downsampling to a standard TR of 2 s. All analyses of the simulated fMRI 
data were identical to the analyses conducted on the empirical fMRI data.

We defined a global coupling parameter as a scalar multiplier on all synap-
tic strengths, and a local processing parameter as a scalar multiplier of all self- 
connection strengths. Self-connections increase the influence of a region’s  
activity on itself in the next time-step, separating variance in its activity from the 
activity of other regions. For the parameter sweep (Fig. 1b) we used 20 global 
coupling parameters (from 0 to 5, using 0.25 increments) and 20 local process-
ing parameters (from 0 to 100, using 5.0 increments), each averaged across 10 
‘subjects’ (separate iterations with random initial structural/synaptic connectiv-
ity matrices). This totaled 4,000 simulations. Modeling was carried out using 
Python (version 2.7).

Data collection. Data were collected as part of the Washington University–
Minnesota Consortium Human Connectome Project (HCP)53. Human par-
ticipants were recruited from Washington University (St. Louis, MO) and the 
surrounding area. All participants gave informed consent consistent with policies 
approved by the Washington University Institutional Review Board. The data 
used were from the “500 Subjects” HCP release. The “100 Unrelated Subjects”  
(n = 100) subset of this data set was used, given that a subset of unrelated indi-
viduals is more appropriate for statistical analyses intended to represent the 
general population. Details regarding randomization can be found in the rel-
evant HCP paper53. Based on our primary statistical tests (one-sample t-tests,  
α = 0.05) and assuming a moderate Cohen’s d effect size of 0.5, n = 100 provides 
99.86% power54 (higher than the standard criterion of 80%). The average age 
of the participants was 29 years (ranging from 22 to 36), and 54% were female. 
Whole-brain echo-planar imaging acquisitions were acquired with a 32-channel 
head coil on a modified 3T Siemens Skyra with TR = 720 ms, TE = 33.1 ms, flip  
angle = 52°, BW = 2,290 Hz/Px, in-plane FOV = 208 × 180 mm, 72 slices,  
2.0 mm isotropic voxels, with a multiband acceleration factor of 8 (ref. 55). Data 
were collected over 2 d. On each day 28 min of rest (eyes open with fixation) fMRI 
data across two runs were collected (56 min total), followed by 30 min of task 
fMRI data collection (60 min total). Each of the seven tasks was completed over 
two consecutive fMRI runs. Resting-state data collection details for this data set 
can be found elsewhere56, as can task data details29.

task paradigms. The data set was collected as part of the Human Connectome 
Project, and included rest and a set of seven tasks29. These tasks included seven 
distinct domains: emotion, reward learning, language, motor, relational reasoning, 
social cognition and working memory. Briefly, the emotion task involved match-
ing fearful or angry faces to a target face. The reward learning task involved a  
gambling task with monetary rewards and losses. The language task involved 
auditory stimuli consisting of narrative stories and math problems, along with 
questions to be answered regarding the prior auditory stimuli. The motor task 
involved movement of the hands, tongue and feet. The relational reasoning task 
involved higher-order cognitive reasoning regarding relations among features of 
presented shape stimuli. The social cognition (theory of mind) task used short 
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video clips of moving shapes that interacted in some way or moved randomly, 
with subjects making decisions about whether the shapes had social interac-
tions. The working memory task involved a visual N-back task, in which subjects 
indicate a match of the current image to either a constant target image or two 
images previous.

Data preprocessing. Preprocessing consisted of standard resting-state func-
tional connectivity preprocessing (typically performed with resting state data), 
with several modifications given that analyses were also performed on task data. 
Resting-state and task data were preprocessed identically in order to facilitate 
comparisons between them.

Spatial normalization to a standard template, motion correction, and intensity 
normalization were already implemented as part of the Human Connectome 
Project in a minimally processed version of the data set described elsewhere57. 
With the volume (rather than the surface) version of the minimally prepro-
cessed  data, we used AFNI58 to additionally remove nuisance time series (motion, 
ventricle and white matter signals, along with their derivatives) using linear 
regression, remove the linear trend for each run and spatially smooth the data.  
The data were smoothed using a non-Gaussian filter (nearest neighbor averaging) 
at 4 mm to reduce the chance of introducing circularity in the activity flow map-
ping procedure (see below). Unlike some standard resting-state FC preprocessing 
pipelines, global signal was not included as a nuisance covariate (given current 
controversy over this procedure59). Note that activity flow mapping results were 
similar after global signal regression (GSR; see the section “Activity flow mapping 
with global signal regression” below). We did not apply a low-pass temporal filter, 
given the likely presence of task signals at higher frequencies than the relatively 
slow resting-state fluctuations and our desire to preprocess the rest and task data 
similarly. Freesurfer60 was used to identify ventricle, white matter and gray matter 
anatomical structures for each participant.

For the main analyses, data were sampled from a set of 264 brain regions 
(rather than individual voxels) in order to make inferences at the region and 
systems level (Fig. 2a). We used an independently identified set of putative 
functional brain regions30 rather than anatomically defined sets of regions in 
order to reduce the chance of combining signal from multiple functional areas61.  
These brain regions were identified using a combination of resting-state FC par-
cellation62 and task-based neuroimaging meta-analysis30. Data were summa-
rized for each region by averaging signal in all voxels falling inside each region. 
Analyses were carried out with Matlab 2014b (Mathworks) and R 3.1.2 (The R 
Foundation for Statistical Computing).

Fc estimation. The initial analyses estimated FC using Pearson correlations 
between time series (averaging across voxels within each region) from all pairs 
of brain regions. All computations used Fisher’s z-transformed values, which were 
reconverted to r-values for reporting purposes.

We used standard multiple linear regression (the regstats function in Matlab) 
as an alternative to Pearson correlation. This involved computing a linear model 
for each to-be-predicted region separately. Resting-state fMRI time series from all 
other regions were used as predictors of the to-be-predicted region’s resting-state 
fMRI time series. The resulting betas, which were directional from the predictor 
regions to the predicted region, were then used as FC estimates in the activity 
flow mapping algorithm. Note that beta estimate directionality reflects optimal 
linear scaling of the source time series to best match the target time series (based 
on resting-state fMRI data), not necessarily the direction of activity flow.

task-activation level estimation. The activation amplitudes were estimated 
using a standard general linear model. The SPM canonical hemodynamic 
response function was used for general linear model estimation, given that all 
tasks involved block designs.

Activity flow mapping permutation testing. We used permutation testing to 
help validate the activity flow mapping approach and provide an additional means 
of inferring statistical significance. The permutation test was constructed so as 
to facilitate a conservative statistical inference, wherein only the hypothesized 
essential aspect of the analysis was permuted. This involved keeping all aspects 
of the analysis the same except for random permuting (without replacement) 
which region’s FC was used on each iteration. In other words, the entire set of 
FC strengths for the to-be-predicted region was swapped with the entire set of 

FC strengths for another region chosen uniformly at random from the set of all 
regions. This permutation process was run 10,000 times (with resting-state FC), 
resulting in a null distribution of r-values.

Voxelwise activity flow mapping. We made relatively minimal changes to the 
regional activity flow modeling procedure when applying it in a voxelwise man-
ner. First, we excluded all voxels within the same functional region (defined as 
local voxels with similar resting-state FC patterns) as the to-be-predicted voxel 
in order to reduce the influence of potentially trivial within-region activity flow 
upon prediction accuracies. Second, we excluded all voxels within 9 mm of the 
same functional region as the to-be-predicted voxel to reduce the chance of 
spatial autocorrelations contributing to prediction accuracies35. Non-Gaussian  
smoothing was also used (averaging neighboring voxels) to further reduce spa-
tial autocorrelation. The recently developed Gordon cortical area parcellation63 
was used because (unlike the Power brain area parcellation used for the other 
analyses) it includes a voxelwise version amenable to our processing pipeline 
and because its development involved similar principles as the Power brain area 
parcellation. Note that we used the Power brain area parcellation for the region-
wise analyses because it is better established and may have more accurate network 
assignments than the Gordon parcellation (an issue not relevant to the voxelwise 
analyses). This conclusion is based on greater similarity of network assignments 
to independently derived network assignments by Yeo et al.64. Unlike the region-
wise analyses, the voxelwise analyses were restricted to the voxels included in the 
Gordon parcellation (i.e., cortex). The 2-mm cubic voxels were downsampled 
to 3-mm cubic voxels (using linear interpolation) to increase computational 
tractability. Finally, the voxelwise activity-flow predictions were calculated for 
each subject independently, and the resulting prediction (and actual) maps were 
subsequently averaged across subjects before actual-to-predicted comparison. 
Results are also reported with predictions compared to actual activation patterns 
for each subject separately. We used Connectome Workbench software (v1.0) for 
visualization. Statistical maps were smoothed on the surface with two standard 
(in Connectome Workbench) iterations before visualization.

For the multiple-regression-based voxelwise activity-flow approach, there were 
many more predictors (voxels) than time points. Thus, unlike the region-wise 
analyses, this made it impossible to compute FC estimates using all available pre-
dictors. Instead we used a standard statistical approach for performing multiple 
regression with many more predictors than data points: principal components 
regression65. Briefly, this involved extracting the time series for the first 1,200 
principal components, performing the regression on each voxel using those 
components as predictors, then projecting the resulting beta values back into 
the original voxel space (from the principal component space). The principal 
components were calculated independently for each to-be-predicted region, 
with that region’s voxels and voxels within 9 mm excluded to avoid circularity.  
We used the first 1,200 components (out of 4,800 resting-state fMRI time points) 
for computational tractability. Note that the same procedures were used for the 
Figure 5 illustrative analysis, except that a single region of interest’s activation 
level was predicted rather than a single voxel’s activation level.

task-specific activation patterns. Task-general activation patterns were defined 
as the first principal component across task activation patterns. Principal com-
ponent analysis was used rather than averaging to reduce the chance that any 
individual task’s activation pattern dominated the task-general pattern. This was 
computed separately for each subject and also for each task; the to-be-predicted 
(or compared) task’s activations were excluded to remove circularity from the 
calculation. Results were virtually identical if all seven tasks were included in the 
task-general activation calculation. Task-specific activation patterns were defined 
as a given task’s activation pattern after regressing out task-general activations 
(the first principal component across the other six tasks’ activation patterns). 
The average pairwise similarity among task-specific activation patterns (i.e., after 
regressing out task-general activations) was r = −0.1.

Prediction of individualized task activations. Each subject’s cogni-
tive task activations were held out in a leave-one-subject-out approach. 
The held-out individual’s resting-state FC, along with other subjects’ task  
activations, was used to predict the held-out individual’s cognitive task activa-
tions. Specifically, task activations were averaged across all subjects except the 
held-out subject and then the activity flow mapping procedure was applied along 
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with the held-out subject’s resting-state FC. This allowed us to quantify the likely 
role of that individual’s intrinsic connections (as estimated by resting-state FC) 
in shaping cognitive task activations.

In a separate analysis, we sought to further test the conclusion that resting-
state FC describes individualized routes of activity flow that shape individual 
differences in cognitive task activations. This involved removing subject-general 
patterns from resting-state FC and each task’s activations before implementing 
the activity flow mapping procedure. This better isolates the subject-specific FC 
and activation patterns, allowing us to better assess prediction accuracy of these 
patterns. Subject-general patterns were identified as the first principal component 
across subjects. These subject-general patterns were then regressed out of each 
subject’s FC and activation patterns. This approach was similar to the task-specific 
pattern isolation approach described above. After removing the subject-general 
activation patterns, cross-subject activation similarity dropped from r = 0.20 on 
average to r = −0.01 on average. Cross-subject resting-state FC similarity dropped 
from r = 0.15 to r = −0.009 on average.

Statistics. All statistical inferences with empirical fMRI data that produced 
P-values were made using two-tailed one-sample t-tests relative to 0 (n = 100; 
degrees of freedom: 99) or, where indicated, permutation tests. Pearson correla-
tion (r) was used as a measure of pattern similarity, with P-values only calcu-
lated for group-level inferences using two-sided one-sample t-tests on the Fisher’s  
z-transformed r-values. All Fisher’s z-transformed r-value distributions were con-
firmed to be approximately normally distributed using histograms and Q-Q plots. 
Cross-task average predicted-to-actual similarities were reported as the primary 
results, with single-task predicted-to-actual similarities reported to confirm the 
primary results were not driven by a subset of tasks. P-values were calculated for 
the cross-task average predicted-to-actual similarities, rather than for each task 
separately, to reduce the number of reported P-values and therefore the multiple 
comparisons needing to be corrected. The same statistical approach was used for 
the computational model analyses, with the exception of a single analysis with 
non-normally distributed comparisons that was also analyzed using Spearman’s 
rank correlation (which does not assume a normal distribution).

Note that data collection and analysis were not performed blind to the condi-
tions of the experiments. Other than selection of the “100 Unrelated Subjects” 
subset of the HCP data (see “Data Collection” above), no subjects or data points 
were excluded from analysis.

The average-then-compare r-values are reported as effect sizes of pattern simi-
larity (squaring their values produces percent linear variance explained), rather 
than their associated P-values. Their P-values were not calculated due to the 
compared patterns possibly not being normally distributed (a requirement for 
Pearson correlation P-values but not effect sizes), as well as this not being a popu-
lation (random effects) statistical inference. P-values below 0.00001 were reported  
as P < 0.00001 based on the convention that typical data analysis approaches 
likely do not have a level of precision consistent with such small values, such 
that reporting these small values would be misleading. Exact P-values can be 
calculated based on the reported t-values.

Correcting for multiple comparisons for each analysis was unnecessary 
(and not possible) due to lack of thresholding and calculation of only a single 
P-value per analysis. As an additional level of statistical caution, however, we 
used a conservative Bonferroni correction for multiple comparisons across all  
calculated P-values reported in this study (12 total). This revealed an uncor-
rected P < 0.004 threshold. All P-values reported as statistically significant were 
below this threshold, such that all significant P-values were statistically significant  
(P < 0.05) after correcting for multiple comparisons across all analyses.

Activity flow mapping with global signal regression. We chose to not use GSR 
for the primary analyses, due to controversy around this resting-state FC pre-
processing step. Specifically, GSR is known to introduce anticorrelations into FC 
graphs59. However, there is evidence that some of the introduced anticorrelations 
are real66, that GSR may increase the accuracy of some FC patterns67 and that 
GSR reduces the impact of motion artifacts68. Therefore, we also applied activity 

flow mapping to data that had been preprocessed using GSR, testing whether 
the primary conclusions are unchanged when including this preprocessing step. 
We focused on the correlation-based FC results, given that multiple-regression 
FC already implicitly removes the global signal by controlling for signals in all 
other regions. Note that unlike GSR, however, multiple-regression FC does not  
(via averaging all time series into a global signal time series) regress out portions 
of regions’ time series from themselves. Thus, multiple-regression FC may reduce 
introduction of negative FC (but see ref. 69).

As expected, we found that the primary conclusions were unchanged (and 
even slightly improved) when using GSR. Specifically, we found (as reported in 
“Results”) that the predicted activation patterns were similar to the actual acti-
vation patterns with GSR: cross-task average r = 0.50, t99 = 45.32, P < 0.00001. 
This was slightly better than the results when not using GSR (average r = 0.48). 
Again, similar to the results obtained when not using GSR, these correlations 
were higher when comparisons were computed after averaging the predicted 
and actual activation patterns across subjects: cross-task average r = 0.73  
(53% variance explained). This was again slightly better than the results when not 
using GSR (average r = 0.66). Overall these results support the conclusion that 
the choice of whether or not to use GSR does not substantially affect the outcome 
of activity flow mapping.

code availability. The code used for activity flow mapping and multiple-regres-
sion FC is available on our lab website (http://www.colelab.org/#resources), 
as Supplementary Software and on GitHub (https://github.com/ColeLab/ 
actflowmapping).

A Supplementary methods checklist is available.
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