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How is task information transferred Resting-state connectivity as Region-to-region information transfer mapping
between brai n reg ions? |nf0 rm atlon ﬂ ow Chan nels Representational content across three rule types for each region
Recent evidence suggests that resting-state functional connectivity architecture describes the routes of ac- ﬂlpothiis:. Intrinsic topology of resting-gt_ate networks shapes the flow of task information
tivity flow for task-specific brain activations (Cole et al., 2016). However, the mechanism by which task infor- between flexible hub networks (e.g., cognitive control networks) and task-related networks.
mation is transferred between functional brain components remains unclear. Shannon’s information theory g o
(Shannon, 1948) offers a framework by which communication channels transmit information between two Network Definitions using parcels from Glasser et al. (2016 ¥ RS Moter fule

receivers. Here, we extend the activity flow mapping framework as a large-scale mechanism and treat
resting-state connectivity estimates as the channels that transfer information content between regions and
networks. We use activity flow over resting-state connections as the underlying mechanism by which task
information is transferred between regions.
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